holocron.optim

To use holocron.optim you have to construct an optimizer object, that will hold the current state and will update the parameters based on the computed gradients.

Optimizers

Implementations of recent parameter optimizer for Pytorch modules.

class holocron.optim.Lamb(params: Iterable[Parameter], lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0.0, scale_clip: Tuple[float, float] | None = None)[source]

Implements the Lamb optimizer from “Large batch optimization for deep learning: training BERT in 76 minutes”.

Parameters:
  • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups

  • lr (float, optional) – learning rate

  • betas (Tuple[float, float], optional) – beta coefficients used for running averages (default: (0.9, 0.999))

  • eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)

  • weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)

  • scale_clip (tuple, optional) – the lower and upper bounds for the weight norm in local LR of LARS

class holocron.optim.Lars(params: Iterable[Parameter], lr: float = 0.001, momentum: float = 0.0, dampening: float = 0.0, weight_decay: float = 0.0, nesterov: bool = False, scale_clip: Tuple[float, float] | None = None)[source]

Implements the LARS optimizer from “Large batch training of convolutional networks”.

Parameters:
  • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups

  • lr (float, optional) – learning rate

  • momentum (float, optional) – momentum factor (default: 0)

  • weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)

  • dampening (float, optional) – dampening for momentum (default: 0)

  • nesterov (bool, optional) – enables Nesterov momentum (default: False)

  • scale_clip (tuple, optional) – the lower and upper bounds for the weight norm in local LR of LARS

class holocron.optim.RaLars(params: Iterable[Parameter], lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0.0, force_adaptive_momentum: bool = False, scale_clip: Tuple[float, float] | None = None)[source]

Implements the RAdam optimizer from “On the variance of the Adaptive Learning Rate and Beyond” with optional Layer-wise adaptive Scaling from “Large Batch Training of Convolutional Networks”

Parameters:
  • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups

  • lr (float, optional) – learning rate

  • betas (Tuple[float, float], optional) – coefficients used for running averages (default: (0.9, 0.999))

  • eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)

  • weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)

  • force_adaptive_momentum (float, optional) – use adaptive momentum if variance is not tractable (default: False)

  • scale_clip (float, optional) – the maximal upper bound for the scale factor of LARS

class holocron.optim.TAdam(params: Iterable[Parameter], lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0.0, amsgrad: bool = False, dof: float | None = None)[source]

Implements the TAdam optimizer from “TAdam: A Robust Stochastic Gradient Optimizer”.

Parameters:
  • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups

  • lr (float, optional) – learning rate

  • betas (Tuple[float, float], optional) – coefficients used for running averages (default: (0.9, 0.999))

  • eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)

  • weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)

  • dof (int, optional) – degrees of freedom

class holocron.optim.AdaBelief(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False, *, foreach: bool | None = None, maximize: bool = False, capturable: bool = False, differentiable: bool = False, fused: bool = False)[source]

Implements the AdaBelief optimizer from “AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients”.

Parameters:
  • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups

  • lr (float, optional) – learning rate

  • betas (Tuple[float, float], optional) – coefficients used for running averages (default: (0.9, 0.999))

  • eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)

  • weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)

  • amsgrad (bool, optional) – whether to use the AMSGrad variant (default: False)

class holocron.optim.AdamP(params: Iterable[Parameter], lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0.0, amsgrad: bool = False, delta: float = 0.1)[source]

Implements the AdamP optimizer from “AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights”.

Parameters:
  • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups

  • lr (float, optional) – learning rate

  • betas (Tuple[float, float], optional) – coefficients used for running averages (default: (0.9, 0.999))

  • eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)

  • weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)

  • amsgrad (bool, optional) – whether to use the AMSGrad variant (default: False)

  • delta (float, optional) – delta threshold for projection (default: False)

Optimizer wrappers

holocron.optim also implements optimizer wrappers.

A base optimizer should always be passed to the wrapper; e.g., you should write your code this way:

>>> optimizer = ...
>>> optimizer = wrapper(optimizer)
class holocron.optim.wrapper.Lookahead(base_optimizer: Optimizer, sync_rate=0.5, sync_period=6)[source]

Implements the Lookahead optimizer wrapper from “Lookahead Optimizer: k steps forward, 1 step back”.

>>> from torch.optim import AdamW
>>> from holocron.optim.wrapper import Lookahead
>>> model = ...
>>> opt = AdamW(model.parameters(), lr=3e-4)
>>> opt_wrapper = Lookahead(opt)
Parameters:
  • base_optimizer (torch.optim.optimizer.Optimizer) – base parameter optimizer

  • sync_rate (int, optional) – rate of weight synchronization

  • sync_period (int, optional) – number of step performed on fast weights before weight synchronization

class holocron.optim.wrapper.Scout(base_optimizer: Optimizer, sync_rate=0.5, sync_period=6)[source]

Implements a new optimizer wrapper based on “Lookahead Optimizer: k steps forward, 1 step back”.

Example::
>>> from torch.optim import AdamW
>>> from holocron.optim.wrapper import Scout
>>> model = ...
>>> opt = AdamW(model.parameters(), lr=3e-4)
>>> opt_wrapper = Scout(opt)
Parameters:
  • base_optimizer (torch.optim.optimizer.Optimizer) – base parameter optimizer

  • sync_rate (int, optional) – rate of weight synchronization

  • sync_period (int, optional) – number of step performed on fast weights before weight synchronization