holocron.models¶
The models subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection and video classification.
The following datasets are available:
Classification¶
Classification models expect a 4D image tensor as an input (N x C x H x W) and returns a 2D output (N x K). The output represents the classification scores for each output classes.
import holocron.models as models
darknet19 = models.darknet19(num_classes=10)
Res2Net¶
- class holocron.models.Res2Net(block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=26, scale=4, replace_stride_with_dilation=None, norm_layer=None)[source]¶
Implements a Res2Net model as described in https://arxiv.org/pdf/1904.01169.pdf
- Parameters:
block (torch.nn.Module) – class constructor to be used for residual blocks
layers (list<python:int>) – layout of layers
num_classes (int) – number of output classes
zero_init_residual (bool) – whether the residual connections should be initialized at zero
groups (int) – number of convolution groups
width_per_group (int) – number of channels per group
scale (int) – scaling ratio within blocks
replace_stride_with_dilation (list<bool>) – whether stride should be traded for dilation
norm_layer (torch.nn.Module) – norm layer to be used
- holocron.models.res2net(depth, num_classes, width_per_group=26, scale=4, pretrained=False, progress=True, **kwargs)[source]¶
Instantiate a Res2Net model
- Parameters:
depth (int) – depth of the model
num_classes (int) – number of output classes
scale (int) – number of branches for cascade convolutions
pretrained (bool) – whether the model should load pretrained weights (ImageNet training)
progress (bool) – whether a progress bar should be displayed while downloading pretrained weights
**kwargs – optional arguments of torchvision.models.resnet.ResNet
- Returns:
loaded Pytorch model
- Return type:
model (torch.nn.Module)
Res2NeXt¶
- holocron.models.res2next(depth, num_classes, width_per_group=4, scale=4, pretrained=False, progress=True, **kwargs)[source]¶
Instantiate a Res2NeXt model
- Parameters:
depth (int) – depth of the model
num_classes (int) – number of output classes
scale (int) – number of branches for cascade convolutions
pretrained (bool) – whether the model should load pretrained weights (ImageNet training)
progress (bool) – whether a progress bar should be displayed while downloading pretrained weights
**kwargs – optional arguments of torchvision.models.resnet.ResNet
- Returns:
loaded Pytorch model
- Return type:
model (torch.nn.Module)
Darknet¶
- holocron.models.darknet24(pretrained=False, progress=True, **kwargs)[source]¶
Darknet-24 from “You Only Look Once: Unified, Real-Time Object Detection”
- Parameters:
- Returns:
classification model
- Return type:
- holocron.models.darknet19(pretrained=False, progress=True, **kwargs)[source]¶
Darknet-19 from “YOLO9000: Better, Faster, Stronger”
- Parameters:
- Returns:
classification model
- Return type:
- holocron.models.darknet53(pretrained=False, progress=True, **kwargs)[source]¶
Darknet-53 from “YOLOv3: An Incremental Improvement”
- Parameters:
- Returns:
classification model
- Return type:
Object Detection¶
Object detection models expect a 4D image tensor as an input (N x C x H x W) and returns a list of dictionaries. Each dictionary has 3 keys: box coordinates, classification probability, classification label.
import holocron.models as models
yolov2 = models.yolov2(num_classes=10)
YOLO¶
- holocron.models.yolov1(pretrained=False, progress=True, **kwargs)[source]¶
YOLO model from “You Only Look Once: Unified, Real-Time Object Detection”
- Parameters:
- Returns:
detection module
- Return type:
- holocron.models.yolov2(pretrained=False, progress=True, **kwargs)[source]¶
YOLOv2 model from “YOLO9000: Better, Faster, Stronger”
- Parameters:
- Returns:
detection module
- Return type: