Source code for holocron.models.darknetv3

from collections import OrderedDict
import torch
import torch.nn as nn

from ..nn.init import init_module
from .utils import conv_sequence, load_pretrained_params
from .resnet import _ResBlock
from holocron.nn import DropBlock2d, GlobalAvgPool2d
from typing import Dict, Any, Optional, Callable, List, Tuple


__all__ = ['DarknetV3', 'darknet53']


default_cfgs: Dict[str, Dict[str, Any]] = {
    'darknet53': {'arch': 'DarknetV3',
                  'layout': [(64, 1), (128, 2), (256, 8), (512, 8), (1024, 4)],
                  'url': 'https://github.com/frgfm/Holocron/releases/download/v0.1.2/darknet53_256-f57b8429.pth'},
}


class ResBlock(_ResBlock):

    def __init__(
        self,
        planes: int,
        mid_planes: int,
        act_layer: Optional[nn.Module] = None,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        drop_layer: Optional[Callable[..., nn.Module]] = None,
        conv_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        super().__init__(
            conv_sequence(planes, mid_planes, act_layer, norm_layer, drop_layer, conv_layer,
                          kernel_size=1, bias=False) +
            conv_sequence(mid_planes, planes, act_layer, norm_layer, drop_layer, conv_layer,
                          kernel_size=3, padding=1, bias=False),
            None, None)
        if drop_layer is not None:
            self.dropblock = DropBlock2d(0.1, 7, inplace=True)

        # The backpropagation does not seem to appreciate inplace activation on the residual branch
        if hasattr(self.conv[-1], 'inplace'):
            self.conv[-1].inplace = False

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        out = super().forward(x)
        if hasattr(self, 'dropblock'):
            out = self.dropblock(out)

        return out


class DarknetBodyV3(nn.Sequential):

    def __init__(
        self,
        layout: List[Tuple[int, int]],
        in_channels: int = 3,
        stem_channels: int = 32,
        act_layer: Optional[nn.Module] = None,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        drop_layer: Optional[Callable[..., nn.Module]] = None,
        conv_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:

        if act_layer is None:
            act_layer = nn.LeakyReLU(0.1, inplace=True)
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        in_chans = [stem_channels] + [_layout[0] for _layout in layout[:-1]]

        super().__init__(OrderedDict([
            ('stem', nn.Sequential(*conv_sequence(in_channels, stem_channels,
                                                  act_layer, norm_layer, drop_layer, conv_layer,
                                                  kernel_size=3, padding=1, bias=False))),
            ('layers', nn.Sequential(*[self._make_layer(num_blocks, _in_chans, out_chans,
                                                        act_layer, norm_layer, drop_layer, conv_layer)
                                       for _in_chans, (out_chans, num_blocks) in zip(in_chans, layout)]))])
        )

    @staticmethod
    def _make_layer(
        num_blocks: int,
        in_planes: int,
        out_planes: int,
        act_layer: Optional[nn.Module] = None,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        drop_layer: Optional[Callable[..., nn.Module]] = None,
        conv_layer: Optional[Callable[..., nn.Module]] = None
    ) -> nn.Sequential:

        layers = conv_sequence(in_planes, out_planes, act_layer, norm_layer, drop_layer, conv_layer,
                               kernel_size=3, padding=1, stride=2, bias=False)
        layers.extend([ResBlock(out_planes, out_planes // 2, act_layer, norm_layer, drop_layer, conv_layer)
                       for _ in range(num_blocks)])

        return nn.Sequential(*layers)


class DarknetV3(nn.Sequential):
    def __init__(
        self,
        layout: List[Tuple[int, int]],
        num_classes: int = 10,
        in_channels: int = 3,
        stem_channels: int = 32,
        act_layer: Optional[nn.Module] = None,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        drop_layer: Optional[Callable[..., nn.Module]] = None,
        conv_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:

        super().__init__(OrderedDict([
            ('features', DarknetBodyV3(layout, in_channels, stem_channels,
                                       act_layer, norm_layer, drop_layer, conv_layer)),
            ('pool', GlobalAvgPool2d(flatten=True)),
            ('classifier', nn.Linear(layout[-1][0], num_classes))]))

        init_module(self, 'leaky_relu')


def _darknet(arch: str, pretrained: bool, progress: bool, **kwargs: Any) -> DarknetV3:
    # Build the model
    model = DarknetV3(default_cfgs[arch]['layout'], **kwargs)
    # Load pretrained parameters
    if pretrained:
        load_pretrained_params(model, default_cfgs[arch]['url'], progress)

    return model


[docs] def darknet53(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DarknetV3: """Darknet-53 from `"YOLOv3: An Incremental Improvement" <https://pjreddie.com/media/files/papers/YOLOv3.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr Returns: torch.nn.Module: classification model """ return _darknet('darknet53', pretrained, progress, **kwargs) # type: ignore[return-value]