Source code for holocron.models.pyconvresnet

import sys
from torch.nn import Module
from holocron.nn import PyConv2d
from .resnet import ResNet, _ResBlock
from .utils import conv_sequence, load_pretrained_params
from typing import Optional, Callable, Any, Dict, List


__all__ = ['PyBottleneck', 'pyconv_resnet50', 'pyconvhg_resnet50']


default_cfgs: Dict[str, Dict[str, Any]] = {
    'pyconv_resnet50': {'block': 'PyBottleneck', 'num_blocks': [3, 4, 6, 3], 'out_chans': [64, 128, 256, 512],
                        'width_per_group': 64,
                        'groups': [[1, 4, 8, 16], [1, 4, 8], [1, 4], [1]],
                        'url': None},
    'pyconvhg_resnet50': {'block': 'PyHGBottleneck', 'num_blocks': [3, 4, 6, 3], 'out_chans': [128, 256, 512, 1024],
                          'width_per_group': 2,
                          'groups': [[32, 32, 32, 32], [32, 64, 64], [32, 64], [32]],
                          'url': None},
}


class PyBottleneck(_ResBlock):
    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[Module] = None,
        groups: List[int] = [1],
        base_width: int = 64,
        dilation: int = 1,
        act_layer: Optional[Module] = None,
        norm_layer: Optional[Callable[[int], Module]] = None,
        drop_layer: Optional[Callable[..., Module]] = None,
        num_levels: int = 2,
        **kwargs: Any
    ) -> None:

        width = int(planes * (base_width / 64.)) * min(groups)

        super().__init__(
            [*conv_sequence(inplanes, width, act_layer, norm_layer, drop_layer, kernel_size=1,
                            stride=1, bias=False, **kwargs),
             *conv_sequence(width, width, act_layer, norm_layer, drop_layer, conv_layer=PyConv2d, kernel_size=3,
                            stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation,
                            num_levels=num_levels, **kwargs),
             *conv_sequence(width, planes * self.expansion, None, norm_layer, drop_layer, kernel_size=1,
                            stride=1, bias=False, **kwargs)],
            downsample, act_layer)


class PyHGBottleneck(PyBottleneck):
    expansion: int = 2


def _pyconvresnet(arch: str, pretrained: bool, progress: bool, **kwargs: Any) -> ResNet:

    # Retrieve the correct block type
    block = sys.modules[__name__].__dict__[default_cfgs[arch]['block']]
    # Build the model
    model = ResNet(block, default_cfgs[arch]['num_blocks'], default_cfgs[arch]['out_chans'], stem_pool=False,
                   width_per_group=default_cfgs[arch]['width_per_group'],
                   block_args=[dict(num_levels=len(group), groups=group)
                               for group in default_cfgs[arch]['groups']], **kwargs)
    # Load pretrained parameters
    if pretrained:
        load_pretrained_params(model, default_cfgs[arch]['url'], progress)

    return model


[docs] def pyconv_resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: """PyConvResNet-50 from `"Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition" <https://arxiv.org/pdf/2006.11538.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr Returns: torch.nn.Module: classification model """ return _pyconvresnet('pyconv_resnet50', pretrained, progress, **kwargs)
[docs] def pyconvhg_resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: """PyConvHGResNet-50 from `"Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition" <https://arxiv.org/pdf/2006.11538.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr Returns: torch.nn.Module: classification model """ return _pyconvresnet('pyconvhg_resnet50', pretrained, progress, **kwargs)