import torch
import torch.nn as nn
from torch.nn import functional as F
from .resnet import _ResBlock, ResNet
from .utils import conv_sequence, load_pretrained_params
from typing import Dict, Any, Optional, Callable
__all__ = ['Tridentneck', 'tridentnet50']
default_cfgs: Dict[str, Dict[str, Any]] = {
'tridentnet50': {'block': 'Tridentneck', 'num_blocks': [3, 4, 6, 3],
'url': 'https://github.com/frgfm/Holocron/releases/download/v0.1.2/tridentnet50_224-98b4ce9c.pth'},
}
class TridentConv2d(nn.Conv2d):
num_branches: int = 3
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
if self.dilation[0] != 1 and self.dilation[0] != self.num_branches:
raise ValueError(f"expected dilation to either be 1 or {self.num_branches}.")
def forward(self, x: torch.Tensor) -> torch.Tensor:
if x.shape[1] % self.num_branches != 0:
raise ValueError("expected number of channels of input tensor to be a multiple of `num_branches`.")
# Dilation for each chunk
if self.dilation[0] == 1:
dilations = [1] * self.num_branches
else:
dilations = [1 + idx for idx in range(self.num_branches)]
# Use shared weight to apply the convolution
out = torch.cat([F.conv2d(_x, self.weight, self.bias, self.stride, tuple(dilation * p for p in self.padding),
(dilation,) * len(self.dilation), self.groups)
for _x, dilation in zip(torch.chunk(x, self.num_branches, 1), dilations)], 1)
return out
class Tridentneck(_ResBlock):
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 3,
act_layer: Optional[nn.Module] = None,
norm_layer: Optional[Callable[[int], nn.Module]] = None,
drop_layer: Optional[Callable[..., nn.Module]] = None,
conv_layer: Optional[Callable[..., nn.Module]] = None,
**kwargs: Any
) -> None:
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if act_layer is None:
act_layer = nn.ReLU(inplace=True)
width = int(planes * (base_width / 64.)) * groups
# Concatenate along the channel axis and enlarge BN to leverage parallelization
super().__init__(
[*conv_sequence(inplanes, width, act_layer, norm_layer, drop_layer, TridentConv2d, bn_channels=3 * width,
kernel_size=1, stride=1, bias=False, dilation=1),
*conv_sequence(width, width, act_layer, norm_layer, drop_layer, TridentConv2d, bn_channels=3 * width,
kernel_size=3, stride=stride,
padding=1, groups=groups, bias=False, dilation=3),
*conv_sequence(width, planes * self.expansion, None, norm_layer, drop_layer, TridentConv2d,
bn_channels=3 * planes * self.expansion,
kernel_size=1, stride=1, bias=False, dilation=1)],
downsample, act_layer)
def _tridentnet(arch: str, pretrained: bool, progress: bool, **kwargs: Any) -> ResNet:
# Build the model
model = ResNet(Tridentneck, default_cfgs[arch]['num_blocks'], [64, 128, 256, 512], # type: ignore[arg-type]
num_repeats=3, **kwargs)
# Load pretrained parameters
if pretrained:
load_pretrained_params(model, default_cfgs[arch]['url'], progress)
return model
[docs]
def tridentnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
"""TridentNet-50 from
`"Scale-Aware Trident Networks for Object Detection" <https://arxiv.org/pdf/1901.01892.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
Returns:
torch.nn.Module: classification model
"""
return _tridentnet('tridentnet50', pretrained, progress, **kwargs)