Source code for holocron.models.tridentnet

import torch
import torch.nn as nn
from torch.nn import functional as F
from .resnet import _ResBlock, ResNet
from .utils import conv_sequence, load_pretrained_params
from typing import Dict, Any, Optional, Callable


__all__ = ['Tridentneck', 'tridentnet50']

default_cfgs: Dict[str, Dict[str, Any]] = {
    'tridentnet50': {'block': 'Tridentneck', 'num_blocks': [3, 4, 6, 3],
                     'url': 'https://github.com/frgfm/Holocron/releases/download/v0.1.2/tridentnet50_224-98b4ce9c.pth'},
}


class TridentConv2d(nn.Conv2d):

    num_branches: int = 3

    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, **kwargs)

        if self.dilation[0] != 1 and self.dilation[0] != self.num_branches:
            raise ValueError(f"expected dilation to either be 1 or {self.num_branches}.")

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if x.shape[1] % self.num_branches != 0:
            raise ValueError("expected number of channels of input tensor to be a multiple of `num_branches`.")

        # Dilation for each chunk
        if self.dilation[0] == 1:
            dilations = [1] * self.num_branches
        else:
            dilations = [1 + idx for idx in range(self.num_branches)]

        # Use shared weight to apply the convolution
        out = torch.cat([F.conv2d(_x, self.weight, self.bias, self.stride, tuple(dilation * p for p in self.padding),
                                  (dilation,) * len(self.dilation), self.groups)
                         for _x, dilation in zip(torch.chunk(x, self.num_branches, 1), dilations)], 1)

        return out


class Tridentneck(_ResBlock):

    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 3,
        act_layer: Optional[nn.Module] = None,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        drop_layer: Optional[Callable[..., nn.Module]] = None,
        conv_layer: Optional[Callable[..., nn.Module]] = None,
        **kwargs: Any
    ) -> None:
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if act_layer is None:
            act_layer = nn.ReLU(inplace=True)

        width = int(planes * (base_width / 64.)) * groups
        # Concatenate along the channel axis and enlarge BN to leverage parallelization
        super().__init__(
            [*conv_sequence(inplanes, width, act_layer, norm_layer, drop_layer, TridentConv2d, bn_channels=3 * width,
                            kernel_size=1, stride=1, bias=False, dilation=1),
             *conv_sequence(width, width, act_layer, norm_layer, drop_layer, TridentConv2d, bn_channels=3 * width,
                            kernel_size=3, stride=stride,
                            padding=1, groups=groups, bias=False, dilation=3),
             *conv_sequence(width, planes * self.expansion, None, norm_layer, drop_layer, TridentConv2d,
                            bn_channels=3 * planes * self.expansion,
                            kernel_size=1, stride=1, bias=False, dilation=1)],
            downsample, act_layer)


def _tridentnet(arch: str, pretrained: bool, progress: bool, **kwargs: Any) -> ResNet:
    # Build the model
    model = ResNet(Tridentneck, default_cfgs[arch]['num_blocks'], [64, 128, 256, 512],  # type: ignore[arg-type]
                   num_repeats=3, **kwargs)
    # Load pretrained parameters
    if pretrained:
        load_pretrained_params(model, default_cfgs[arch]['url'], progress)

    return model


[docs] def tridentnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: """TridentNet-50 from `"Scale-Aware Trident Networks for Object Detection" <https://arxiv.org/pdf/1901.01892.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr Returns: torch.nn.Module: classification model """ return _tridentnet('tridentnet50', pretrained, progress, **kwargs)