[docs]classAdaBelief(Adam):"""Implements the AdaBelief optimizer from `"AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients" <https://arxiv.org/pdf/2010.07468.pdf>`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate betas (Tuple[float, float], optional): coefficients used for running averages (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (bool, optional): whether to use the AMSGrad variant (default: False) """@torch.no_grad()defstep(self,closure:Optional[Callable[[],float]]=None)->Optional[float]:"""Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """loss=NoneifclosureisnotNone:withtorch.enable_grad():loss=closure()forgroupinself.param_groups:params_with_grad=[]grads=[]exp_avgs=[]exp_avg_sqs=[]max_exp_avg_sqs=[]state_steps=[]forpingroup['params']:ifp.gradisnotNone:params_with_grad.append(p)ifp.grad.is_sparse:raiseRuntimeError('AdaBelief does not support sparse gradients')grads.append(p.grad)state=self.state[p]# Lazy state initializationiflen(state)==0:state['step']=0# Exponential moving average of gradient valuesstate['exp_avg']=torch.zeros_like(p,memory_format=torch.preserve_format)# Exponential moving average of squared gradient valuesstate['exp_avg_sq']=torch.zeros_like(p,memory_format=torch.preserve_format)ifgroup['amsgrad']:# Maintains max of all exp. moving avg. of sq. grad. valuesstate['max_exp_avg_sq']=torch.zeros_like(p,memory_format=torch.preserve_format)exp_avgs.append(state['exp_avg'])exp_avg_sqs.append(state['exp_avg_sq'])ifgroup['amsgrad']:max_exp_avg_sqs.append(state['max_exp_avg_sq'])# update the steps for each param group updatestate['step']+=1# record the step after step updatestate_steps.append(state['step'])beta1,beta2=group['betas']F.adabelief(params_with_grad,grads,exp_avgs,exp_avg_sqs,max_exp_avg_sqs,state_steps,group['amsgrad'],beta1,beta2,group['lr'],group['weight_decay'],group['eps'],)returnloss