Source code for holocron.optim.adabelief

import torch
from . import functional as F
from torch.optim import Adam
from typing import Optional, Callable


[docs] class AdaBelief(Adam): """Implements the AdaBelief optimizer from `"AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients" <https://arxiv.org/pdf/2010.07468.pdf>`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate betas (Tuple[float, float], optional): coefficients used for running averages (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (bool, optional): whether to use the AMSGrad variant (default: False) """ @torch.no_grad() def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] max_exp_avg_sqs = [] state_steps = [] for p in group['params']: if p.grad is not None: params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError('AdaBelief does not support sparse gradients') grads.append(p.grad) state = self.state[p] # Lazy state initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) if group['amsgrad']: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avgs.append(state['exp_avg']) exp_avg_sqs.append(state['exp_avg_sq']) if group['amsgrad']: max_exp_avg_sqs.append(state['max_exp_avg_sq']) # update the steps for each param group update state['step'] += 1 # record the step after step update state_steps.append(state['step']) beta1, beta2 = group['betas'] F.adabelief(params_with_grad, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, group['amsgrad'], beta1, beta2, group['lr'], group['weight_decay'], group['eps'], ) return loss