Res2Net¶
The Res2Net model is based on the "Res2Net: A New Multi-scale Backbone Architecture" paper.
Architecture overview¶
This paper replaces the bottleneck block of ResNet architectures by a multi-scale version.

The key takeaways from the paper are the following:
- switch to efficient multi-scale convolutions using a cascade of conv 3x3
- adapt the block for cardinality & SE blocks
Model builders¶
The following model builders can be used to instantiate a Res2Net model, with or
without pre-trained weights. All the model builders internally rely on the
ResNet base class.
res2net50_26w_4s
¶
res2net50_26w_4s(pretrained: bool = False, checkpoint: Checkpoint | None = None, progress: bool = True, **kwargs: Any) -> ResNet
Res2Net-50 26wx4s from "Res2Net: A New Multi-scale Backbone Architecture"
| PARAMETER | DESCRIPTION |
|---|---|
pretrained
|
If True, returns a model pre-trained on ImageNet
TYPE:
|
checkpoint
|
If specified, the model's parameters will be set to the checkpoint's values
TYPE:
|
progress
|
If True, displays a progress bar of the download to stderr
TYPE:
|
kwargs
|
keyword args of
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
ResNet
|
classification model |
Res2Net50_26w_4s_Checkpoint
¶
Bases: Enum
IMAGENETTE
class-attribute
instance-attribute
¶
IMAGENETTE = _checkpoint(arch='res2net50_26w_4s', url='https://github.com/frgfm/Holocron/releases/download/v0.2.1/res2net50_26w_4s_224-345170e8.pth', acc1=0.9394, acc5=0.9941, sha256='345170e8ff75d10330af55674090b0d9aa751e14b6f3b4a95bb8ea6cdd65be4b', size=95020747, num_params=23670610, commit='6e32c5b578711a2ef3731a8f8c61760ed9f03e58', train_args='./imagenette2-320/ --arch res2net50_26w_4s --batch-size 64 --mixup-alpha 0.2 --amp --device 0 --epochs 100 --lr 1e-3 --label-smoothing 0.1 --random-erase 0.1 --train-crop-size 176 --val-resize-size 232 --opt adamw --weight-decay 5e-2')