Source code for torchcam.methods.activation

# Copyright (C) 2020-2024, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

import logging
import math
import sys
from typing import Any, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import Tensor, nn

from ._utils import locate_linear_layer
from .core import _CAM

__all__ = ["CAM", "ISCAM", "SSCAM", "ScoreCAM"]

logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
stream_handler = logging.StreamHandler(sys.stdout)
log_formatter = logging.Formatter("%(levelname)s:     %(message)s")
stream_handler.setFormatter(log_formatter)
logger.addHandler(stream_handler)


[docs] class CAM(_CAM): r"""Implements a class activation map extractor as described in `"Learning Deep Features for Discriminative Localization" <https://arxiv.org/pdf/1512.04150.pdf>`_. The Class Activation Map (CAM) is defined for image classification models that have global pooling at the end of the visual feature extraction block. The localization map is computed as follows: .. math:: L^{(c)}_{CAM}(x, y) = ReLU\Big(\sum\limits_k w_k^{(c)} A_k(x, y)\Big) where :math:`A_k(x, y)` is the activation of node :math:`k` in the target layer of the model at position :math:`(x, y)`, and :math:`w_k^{(c)}` is the weight corresponding to class :math:`c` for unit :math:`k` in the fully connected layer.. >>> from torchvision.models import resnet18 >>> from torchcam.methods import CAM >>> model = resnet18(pretrained=True).eval() >>> cam = CAM(model, 'layer4', 'fc') >>> with torch.no_grad(): out = model(input_tensor) >>> cam(class_idx=100) Args: model: input model target_layer: either the target layer itself or its name, or a list of those fc_layer: either the fully connected layer itself or its name input_shape: shape of the expected input tensor excluding the batch dimension """ def __init__( self, model: nn.Module, target_layer: Optional[Union[Union[nn.Module, str], List[Union[nn.Module, str]]]] = None, fc_layer: Optional[Union[nn.Module, str]] = None, input_shape: Tuple[int, ...] = (3, 224, 224), **kwargs: Any, ) -> None: if isinstance(target_layer, list) and len(target_layer) > 1: raise ValueError("base CAM does not support multiple target layers") super().__init__(model, target_layer, input_shape, **kwargs) if isinstance(fc_layer, str): fc_name = fc_layer # Find the location of the module elif isinstance(fc_layer, nn.Module): fc_name = self._resolve_layer_name(fc_layer) # If the layer is not specified, try automatic resolution elif fc_layer is None: fc_name = locate_linear_layer(model) # type: ignore[assignment] # Warn the user of the choice if isinstance(fc_name, str): logger.warning(f"no value was provided for `fc_layer`, thus set to '{fc_name}'.") else: raise ValueError("unable to resolve `fc_layer` automatically, please specify its value.") else: raise TypeError("invalid argument type for `fc_layer`") # Softmax weight self._fc_weights = self.submodule_dict[fc_name].weight.data # squeeze to accomodate replacement by Conv1x1 if self._fc_weights.ndim > 2: self._fc_weights = self._fc_weights.view(*self._fc_weights.shape[:2]) @torch.no_grad() def _get_weights( self, class_idx: Union[int, List[int]], *_: Any, ) -> List[Tensor]: """Computes the weight coefficients of the hooked activation maps.""" # Take the FC weights of the target class if isinstance(class_idx, int): return [self._fc_weights[class_idx, :].unsqueeze(0)] return [self._fc_weights[class_idx, :]]
[docs] class ScoreCAM(_CAM): r"""Implements a class activation map extractor as described in `"Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks" <https://arxiv.org/pdf/1910.01279.pdf>`_. The localization map is computed as follows: .. math:: L^{(c)}_{Score-CAM}(x, y) = ReLU\Big(\sum\limits_k w_k^{(c)} A_k(x, y)\Big) with the coefficient :math:`w_k^{(c)}` being defined as: .. math:: w_k^{(c)} = softmax\Big(Y^{(c)}(M_k) - Y^{(c)}(X_b)\Big)_k where :math:`A_k(x, y)` is the activation of node :math:`k` in the target layer of the model at position :math:`(x, y)`, :math:`Y^{(c)}(X)` is the model output score for class :math:`c` before softmax for input :math:`X`, :math:`X_b` is a baseline image, and :math:`M_k` is defined as follows: .. math:: M_k = \frac{U(A_k) - \min\limits_m U(A_m)}{\max\limits_m U(A_m) - \min\limits_m U(A_m)}) \odot X_b where :math:`\odot` refers to the element-wise multiplication and :math:`U` is the upsampling operation. >>> from torchvision.models import resnet18 >>> from torchcam.methods import ScoreCAM >>> model = resnet18(pretrained=True).eval() >>> cam = ScoreCAM(model, 'layer4') >>> with torch.no_grad(): out = model(input_tensor) >>> cam(class_idx=100) Args: model: input model target_layer: either the target layer itself or its name, or a list of those batch_size: batch size used to forward masked inputs input_shape: shape of the expected input tensor excluding the batch dimension """ def __init__( self, model: nn.Module, target_layer: Optional[Union[Union[nn.Module, str], List[Union[nn.Module, str]]]] = None, batch_size: int = 32, input_shape: Tuple[int, ...] = (3, 224, 224), **kwargs: Any, ) -> None: super().__init__(model, target_layer, input_shape, **kwargs) # Input hook self.hook_handles.append(model.register_forward_pre_hook(self._store_input)) # type: ignore[arg-type] self.bs = batch_size # Ensure ReLU is applied to CAM before normalization self._relu = True def _store_input(self, _: nn.Module, input_: Tensor) -> None: """Store model input tensor.""" if self._hooks_enabled: self._input = input_[0].data.clone() @torch.no_grad() def _get_score_weights(self, activations: List[Tensor], class_idx: Union[int, List[int]]) -> List[Tensor]: b, c = activations[0].shape[:2] # (N * C, I, H, W) scored_inputs = [ (act.unsqueeze(2) * self._input.unsqueeze(1)).view(b * c, *self._input.shape[1:]) for act in activations ] # Initialize weights # (N * C) weights = [torch.zeros(b * c, dtype=t.dtype).to(device=t.device) for t in activations] # (N, M) logits = self.model(self._input) idcs = torch.arange(b).repeat_interleave(c) for idx, scored_input in enumerate(scored_inputs): # Process by chunk (GPU RAM limitation) for _idx in range(math.ceil(weights[idx].numel() / self.bs)): slice_ = slice(_idx * self.bs, min((_idx + 1) * self.bs, weights[idx].numel())) # Get the softmax probabilities of the target class # (*, M) cic = self.model(scored_input[slice_]) - logits[idcs[slice_]] if isinstance(class_idx, int): weights[idx][slice_] = cic[:, class_idx] else: target = torch.tensor(class_idx, device=cic.device)[idcs[slice_]] weights[idx][slice_] = cic.gather(1, target.view(-1, 1)).squeeze(1) # Reshape the weights (N, C) return [torch.softmax(w.view(b, c), -1) for w in weights] @torch.no_grad() def _get_weights( self, class_idx: Union[int, List[int]], *_: Any, ) -> List[Tensor]: """Computes the weight coefficients of the hooked activation maps.""" self.hook_a: List[Tensor] # type: ignore[assignment] # Normalize the activation # (N, C, H', W') upsampled_a = [self._normalize(act.clone(), act.ndim - 2) for act in self.hook_a] # Upsample it to input_size # (N, C, H, W) spatial_dims = self._input.ndim - 2 interpolation_mode = "bilinear" if spatial_dims == 2 else "trilinear" if spatial_dims == 3 else "nearest" upsampled_a = [ F.interpolate( up_a, self._input.shape[2:], mode=interpolation_mode, align_corners=False, ) for up_a in upsampled_a ] # Disable hook updates self.disable_hooks() # Switch to eval origin_mode = self.model.training self.model.eval() weights: List[Tensor] = self._get_score_weights(upsampled_a, class_idx) # Reenable hook updates self.enable_hooks() # Put back the model in the correct mode self.model.training = origin_mode return weights def __repr__(self) -> str: return f"{self.__class__.__name__}(batch_size={self.bs})"
[docs] class SSCAM(ScoreCAM): r"""Implements a class activation map extractor as described in `"SS-CAM: Smoothed Score-CAM for Sharper Visual Feature Localization" <https://arxiv.org/pdf/2006.14255.pdf>`_. The localization map is computed as follows: .. math:: L^{(c)}_{SS-CAM}(x, y) = ReLU\Big(\sum\limits_k w_k^{(c)} A_k(x, y)\Big) with the coefficient :math:`w_k^{(c)}` being defined as: .. math:: w_k^{(c)} = softmax\Big(\frac{1}{N} \sum\limits_{i=1}^N (Y^{(c)}(\hat{M_k}) - Y^{(c)}(X_b))\Big)_k where :math:`N` is the number of samples used to smooth the weights, :math:`A_k(x, y)` is the activation of node :math:`k` in the target layer of the model at position :math:`(x, y)`, :math:`Y^{(c)}(X)` is the model output score for class :math:`c` before softmax for input :math:`X`, :math:`X_b` is a baseline image, and :math:`M_k` is defined as follows: .. math:: \hat{M_k} = \Bigg(\frac{U(A_k) - \min\limits_m U(A_m)}{\max\limits_m U(A_m) - \min\limits_m U(A_m)} + \delta\Bigg) \odot X_b where :math:`\odot` refers to the element-wise multiplication, :math:`U` is the upsampling operation, :math:`\delta \sim \mathcal{N}(0, \sigma^2)` is the random noise that follows a 0-mean gaussian distribution with a standard deviation of :math:`\sigma`. >>> from torchvision.models import resnet18 >>> from torchcam.methods import SSCAM >>> model = resnet18(pretrained=True).eval() >>> cam = SSCAM(model, 'layer4') >>> with torch.no_grad(): out = model(input_tensor) >>> cam(class_idx=100) Args: model: input model target_layer: either the target layer itself or its name, or a list of those batch_size: batch size used to forward masked inputs num_samples: number of noisy samples used for weight computation std: standard deviation of the noise added to the normalized activation input_shape: shape of the expected input tensor excluding the batch dimension """ def __init__( self, model: nn.Module, target_layer: Optional[Union[Union[nn.Module, str], List[Union[nn.Module, str]]]] = None, batch_size: int = 32, num_samples: int = 35, std: float = 2.0, input_shape: Tuple[int, ...] = (3, 224, 224), **kwargs: Any, ) -> None: super().__init__(model, target_layer, batch_size, input_shape, **kwargs) self.num_samples = num_samples self.std = std self._distrib = torch.distributions.normal.Normal(0, self.std) @torch.no_grad() def _get_score_weights(self, activations: List[Tensor], class_idx: Union[int, List[int]]) -> List[Tensor]: b, c = activations[0].shape[:2] # Initialize weights # (N * C) weights = [torch.zeros(b * c, dtype=t.dtype).to(device=t.device) for t in activations] # (N, M) logits = self.model(self._input) idcs = torch.arange(b).repeat_interleave(c) for idx, act in enumerate(activations): # Add noise for _ in range(self.num_samples): noise = self._distrib.sample(act.size()).to(device=act.device) # (N, C, I, H, W) scored_input = (act + noise).unsqueeze(2) * self._input.unsqueeze(1) # (N * C, I, H, W) scored_input = scored_input.view(b * c, *scored_input.shape[2:]) # Process by chunk (GPU RAM limitation) for _idx in range(math.ceil(weights[idx].numel() / self.bs)): slice_ = slice(_idx * self.bs, min((_idx + 1) * self.bs, weights[idx].numel())) # Get the softmax probabilities of the target class cic = self.model(scored_input[slice_]) - logits[idcs[slice_]] if isinstance(class_idx, int): weights[idx][slice_] += cic[:, class_idx] else: target = torch.tensor(class_idx, device=cic.device)[idcs[slice_]] weights[idx][slice_] += cic.gather(1, target.view(-1, 1)).squeeze(1) # Reshape the weights (N, C) return [torch.softmax(weight.div_(self.num_samples).view(b, c), -1) for weight in weights] def __repr__(self) -> str: return f"{self.__class__.__name__}(batch_size={self.bs}, num_samples={self.num_samples}, std={self.std})"
[docs] class ISCAM(ScoreCAM): r"""Implements a class activation map extractor as described in `"IS-CAM: Integrated Score-CAM for axiomatic-based explanations" <https://arxiv.org/pdf/2010.03023.pdf>`_. The localization map is computed as follows: .. math:: L^{(c)}_{ISS-CAM}(x, y) = ReLU\Big(\sum\limits_k w_k^{(c)} A_k(x, y)\Big) with the coefficient :math:`w_k^{(c)}` being defined as: .. math:: w_k^{(c)} = softmax\Bigg(\frac{1}{N} \sum\limits_{i=1}^N \Big(Y^{(c)}(M_i) - Y^{(c)}(X_b)\Big)\Bigg)_k where :math:`N` is the number of samples used to smooth the weights, :math:`A_k(x, y)` is the activation of node :math:`k` in the target layer of the model at position :math:`(x, y)`, :math:`Y^{(c)}(X)` is the model output score for class :math:`c` before softmax for input :math:`X`, :math:`X_b` is a baseline image, and :math:`M_i` is defined as follows: .. math:: M_i = \sum\limits_{j=0}^{i-1} \frac{j}{N} \frac{U(A_k) - \min\limits_m U(A_m)}{\max\limits_m U(A_m) - \min\limits_m U(A_m)} \odot X_b where :math:`\odot` refers to the element-wise multiplication, :math:`U` is the upsampling operation. >>> from torchvision.models import resnet18 >>> from torchcam.methods import ISSCAM >>> model = resnet18(pretrained=True).eval() >>> cam = ISCAM(model, 'layer4') >>> with torch.no_grad(): out = model(input_tensor) >>> cam(class_idx=100) Args: model: input model target_layer: either the target layer itself or its name, or a list of those batch_size: batch size used to forward masked inputs num_samples: number of noisy samples used for weight computation input_shape: shape of the expected input tensor excluding the batch dimension """ def __init__( self, model: nn.Module, target_layer: Optional[Union[Union[nn.Module, str], List[Union[nn.Module, str]]]] = None, batch_size: int = 32, num_samples: int = 10, input_shape: Tuple[int, ...] = (3, 224, 224), **kwargs: Any, ) -> None: super().__init__(model, target_layer, batch_size, input_shape, **kwargs) self.num_samples = num_samples @torch.no_grad() def _get_score_weights(self, activations: List[Tensor], class_idx: Union[int, List[int]]) -> List[Tensor]: b, c = activations[0].shape[:2] # (N * C, I, H, W) scored_inputs = [ (act.unsqueeze(2) * self._input.unsqueeze(1)).view(b * c, *self._input.shape[1:]) for act in activations ] # Initialize weights weights = [torch.zeros(b * c, dtype=t.dtype).to(device=t.device) for t in activations] # (N, M) logits = self.model(self._input) idcs = torch.arange(b).repeat_interleave(c) for idx, scored_input in enumerate(scored_inputs): coeff = 0.0 # Process by chunk (GPU RAM limitation) for sidx in range(self.num_samples): coeff += (sidx + 1) / self.num_samples # Process by chunk (GPU RAM limitation) for _idx in range(math.ceil(weights[idx].numel() / self.bs)): slice_ = slice(_idx * self.bs, min((_idx + 1) * self.bs, weights[idx].numel())) # Get the softmax probabilities of the target class cic = self.model(coeff * scored_input[slice_]) - logits[idcs[slice_]] if isinstance(class_idx, int): weights[idx][slice_] += cic[:, class_idx] else: target = torch.tensor(class_idx, device=cic.device)[idcs[slice_]] weights[idx][slice_] += cic.gather(1, target.view(-1, 1)).squeeze(1) # Reshape the weights (N, C) return [torch.softmax(weight.div_(self.num_samples).view(b, c), -1) for weight in weights]