torchscan¶
Crawler¶
- torchscan.crawl_module(module, input_shape, dtype=None, max_depth=None)[source]¶
- Retrieves module information for an expected input tensor shape - Example::
- >>> import torch.nn as nn >>> from torchscan import summary >>> mod = nn.Conv2d(3, 8, 3) >>> module_info = crawl_module(mod, (3, 224, 224)) 
 - Parameters:
- module (torch.nn.Module) – module to inspect 
- input_shape (tuple<int>) – expected input shapes 
- dtype (type) – data type of each input argument to the module 
- max_depth (int, optional) – maximum depth of layer information 
 
- Returns:
- layer and overhead information 
- Return type:
- dict 
 
- torchscan.summary(module, input_shape, wrap_mode='mid', max_depth=None, receptive_field=False)[source]¶
- Print module summary for an expected input tensor shape - Example::
- >>> import torch.nn as nn >>> from torchscan import summary >>> mod = nn.Conv2d(3, 8, 3) >>> summary(mod, (3, 224, 224), receptive_field=True) 
 - Parameters:
- module (torch.nn.Module) – module to inspect 
- input_shape (tuple<int>) – expected input shapes 
- wrap_mode (str, optional) – if a value is too long, where the wrapping should be performed 
- max_depth (int, optional) – maximum depth of layer information 
- receptive_field (bool, optional) – whether receptive field estimation should be performed