Source code for holocron.models.classification.darknetv4

# Copyright (C) 2020-2022, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

from collections import OrderedDict
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from holocron.nn import DropBlock2d, GlobalAvgPool2d
from holocron.nn.init import init_module

from ..presets import IMAGENETTE
from ..utils import conv_sequence, load_pretrained_params
from .darknetv3 import ResBlock

__all__ = ["DarknetV4", "cspdarknet53", "cspdarknet53_mish"]


default_cfgs: Dict[str, Dict[str, Any]] = {
    "cspdarknet53": {
        **IMAGENETTE,
        "input_shape": (3, 224, 224),
        "url": "https://github.com/frgfm/Holocron/releases/download/v0.1.3/cspdarknet53_224-d2a17b18.pt",
    },
    "cspdarknet53_mish": {
        **IMAGENETTE,
        "input_shape": (3, 224, 224),
        "url": "https://github.com/frgfm/Holocron/releases/download/v0.1.3/cspdarknet53_mish_256-32d8ec68.pt",
    },
}


class CSPStage(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        num_blocks: int = 1,
        act_layer: Optional[nn.Module] = None,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        drop_layer: Optional[Callable[..., nn.Module]] = None,
        conv_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        compression = 2 if num_blocks > 1 else 1
        self.base_layer = nn.Sequential(
            *conv_sequence(
                in_channels,
                out_channels,
                act_layer,
                norm_layer,
                drop_layer,
                conv_layer,
                kernel_size=3,
                padding=1,
                stride=2,
                bias=(norm_layer is None),
            ),
            # Share the conv
            *conv_sequence(
                out_channels,
                2 * out_channels // compression,
                act_layer,
                norm_layer,
                drop_layer,
                conv_layer,
                kernel_size=1,
                bias=(norm_layer is None),
            ),
        )
        self.main = nn.Sequential(
            *[
                ResBlock(
                    out_channels // compression,
                    out_channels // compression if num_blocks > 1 else in_channels,
                    act_layer,
                    norm_layer,
                    drop_layer,
                    conv_layer,
                )
                for _ in range(num_blocks)
            ],
            *conv_sequence(
                out_channels // compression,
                out_channels // compression,
                act_layer,
                norm_layer,
                drop_layer,
                conv_layer,
                kernel_size=1,
                bias=(norm_layer is None),
            ),
        )
        self.transition = nn.Sequential(
            *conv_sequence(
                2 * out_channels // compression,
                out_channels,
                act_layer,
                norm_layer,
                drop_layer,
                conv_layer,
                kernel_size=1,
                bias=(norm_layer is None),
            )
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.base_layer(x)
        x1, x2 = x.chunk(2, dim=1)
        return self.transition(torch.cat([x1, self.main(x2)], dim=1))


class DarknetBodyV4(nn.Sequential):
    def __init__(
        self,
        layout: List[Tuple[int, int]],
        in_channels: int = 3,
        stem_channels: int = 32,
        num_features: int = 1,
        act_layer: Optional[nn.Module] = None,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        drop_layer: Optional[Callable[..., nn.Module]] = None,
        conv_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:

        super().__init__()

        if act_layer is None:
            act_layer = nn.LeakyReLU(inplace=True)
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        in_chans = [stem_channels] + [_layout[0] for _layout in layout[:-1]]

        super().__init__(
            OrderedDict(
                [
                    (
                        "stem",
                        nn.Sequential(
                            *conv_sequence(
                                in_channels,
                                stem_channels,
                                act_layer,
                                norm_layer,
                                drop_layer,
                                conv_layer,
                                kernel_size=3,
                                padding=1,
                                bias=(norm_layer is None),
                            )
                        ),
                    ),
                    (
                        "stages",
                        nn.Sequential(
                            *[
                                CSPStage(
                                    _in_chans, out_chans, num_blocks, act_layer, norm_layer, drop_layer, conv_layer
                                )
                                for _in_chans, (out_chans, num_blocks) in zip(in_chans, layout)
                            ]
                        ),
                    ),
                ]
            )
        )

        self.num_features = num_features

    def forward(self, x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]:

        if self.num_features == 1:
            return super().forward(x)

        self.stem: nn.Sequential
        self.stages: nn.Sequential
        x = self.stem(x)
        features = []
        for idx, stage in enumerate(self.stages):
            x = stage(x)
            if idx >= (len(self.stages) - self.num_features):
                features.append(x)

        return features


class DarknetV4(nn.Sequential):
    def __init__(
        self,
        layout: List[Tuple[int, int]],
        num_classes: int = 10,
        in_channels: int = 3,
        stem_channels: int = 32,
        num_features: int = 1,
        act_layer: Optional[nn.Module] = None,
        norm_layer: Optional[Callable[[int], nn.Module]] = None,
        drop_layer: Optional[Callable[..., nn.Module]] = None,
        conv_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:

        super().__init__(
            OrderedDict(
                [
                    (
                        "features",
                        DarknetBodyV4(
                            layout,
                            in_channels,
                            stem_channels,
                            num_features,
                            act_layer,
                            norm_layer,
                            drop_layer,
                            conv_layer,
                        ),
                    ),
                    ("pool", GlobalAvgPool2d(flatten=True)),
                    ("classifier", nn.Linear(layout[-1][0], num_classes)),
                ]
            )
        )

        init_module(self, "leaky_relu")


def _darknet(arch: str, pretrained: bool, progress: bool, layout: List[Tuple[int, int]], **kwargs: Any) -> DarknetV4:
    # Build the model
    model = DarknetV4(layout, **kwargs)
    model.default_cfg = default_cfgs[arch]  # type: ignore[assignment]
    # Load pretrained parameters
    if pretrained:
        load_pretrained_params(model, default_cfgs[arch]["url"], progress)

    return model


[docs] def cspdarknet53(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DarknetV4: """CSP-Darknet-53 from `"CSPNet: A New Backbone that can Enhance Learning Capability of CNN" <https://arxiv.org/pdf/1911.11929.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr Returns: torch.nn.Module: classification model """ return _darknet("cspdarknet53", pretrained, progress, [(64, 1), (128, 2), (256, 8), (512, 8), (1024, 4)], **kwargs)
[docs] def cspdarknet53_mish(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DarknetV4: """Modified version of CSP-Darknet-53 from `"CSPNet: A New Backbone that can Enhance Learning Capability of CNN" <https://arxiv.org/pdf/1911.11929.pdf>`_ with Mish as activation layer and DropBlock as regularization layer. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr Returns: torch.nn.Module: classification model """ kwargs["act_layer"] = nn.Mish(inplace=True) kwargs["drop_layer"] = DropBlock2d return _darknet( "cspdarknet53_mish", pretrained, progress, [(64, 1), (128, 2), (256, 8), (512, 8), (1024, 4)], **kwargs )