# Copyright (C) 2019-2022, François-Guillaume Fernandez.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
from typing import Optional
import torch
import torch.nn.functional as F
from torch import einsum, nn
__all__ = ["LambdaLayer"]
[docs]
class LambdaLayer(nn.Module):
"""Lambda layer from `"LambdaNetworks: Modeling long-range interactions without attention"
<https://openreview.net/pdf?id=xTJEN-ggl1b>`_. The implementation was adapted from `lucidrains'
<https://github.com/lucidrains/lambda-networks/blob/main/lambda_networks/lambda_networks.py>`_.
.. image:: https://github.com/frgfm/Holocron/releases/download/v0.1.3/lambdalayer.png
:align: center
Args:
in_channels (int): input channels
out_channels (int, optional): output channels
dim_k (int): key dimension
n (int, optional): number of input pixels
r (int, optional): receptive field for relative positional encoding
num_heads (int, optional): number of attention heads
dim_u (int, optional): intra-depth dimension
"""
def __init__(
self,
in_channels: int,
out_channels: int,
dim_k: int,
n: Optional[int] = None,
r: Optional[int] = None,
num_heads: int = 4,
dim_u: int = 1,
) -> None:
super().__init__()
self.u = dim_u
self.num_heads = num_heads
if out_channels % num_heads != 0:
raise AssertionError("values dimension must be divisible by number of heads for multi-head query")
dim_v = out_channels // num_heads
# Project input and context to get queries, keys & values
self.to_q = nn.Conv2d(in_channels, dim_k * num_heads, 1, bias=False)
self.to_k = nn.Conv2d(in_channels, dim_k * dim_u, 1, bias=False)
self.to_v = nn.Conv2d(in_channels, dim_v * dim_u, 1, bias=False)
self.norm_q = nn.BatchNorm2d(dim_k * num_heads)
self.norm_v = nn.BatchNorm2d(dim_v * dim_u)
self.local_contexts = r is not None
if r is not None:
if r % 2 != 1:
raise AssertionError("Receptive kernel size should be odd")
self.padding = r // 2
self.R = nn.Parameter(torch.randn(dim_k, dim_u, 1, r, r)) # type: ignore[attr-defined]
else:
if n is None:
raise AssertionError("You must specify the total sequence length (h x w)")
self.pos_emb = nn.Parameter(torch.randn(n, n, dim_k, dim_u)) # type: ignore[attr-defined]
def forward(self, x: torch.Tensor) -> torch.Tensor:
b, _, h, w = x.shape
# Project inputs & context to retrieve queries, keys and values
q = self.to_q(x)
k = self.to_k(x)
v = self.to_v(x)
# Normalize queries & values
q = self.norm_q(q)
v = self.norm_v(v)
# B x (num_heads * dim_k) * H * W -> B x num_heads x dim_k x (H * W)
q = q.reshape(b, self.num_heads, -1, h * w)
# B x (dim_k * dim_u) * H * W -> B x dim_u x dim_k x (H * W)
k = k.reshape(b, -1, self.u, h * w).permute(0, 2, 1, 3)
# B x (dim_v * dim_u) * H * W -> B x dim_u x dim_v x (H * W)
v = v.reshape(b, -1, self.u, h * w).permute(0, 2, 1, 3)
# Normalized keys
k = k.softmax(dim=-1)
# Content function
λc = einsum("b u k m, b u v m -> b k v", k, v)
Yc = einsum("b h k n, b k v -> b n h v", q, λc)
# Position function
if self.local_contexts:
# B x dim_u x dim_v x (H * W) -> B x dim_u x dim_v x H x W
v = v.reshape(b, self.u, v.shape[2], h, w)
λp = F.conv3d(v, self.R, padding=(0, self.padding, self.padding))
Yp = einsum("b h k n, b k v n -> b n h v", q, λp.flatten(3))
else:
λp = einsum("n m k u, b u v m -> b n k v", self.pos_emb, v)
Yp = einsum("b h k n, b n k v -> b n h v", q, λp)
Y = Yc + Yp
# B x (H * W) x num_heads x dim_v -> B x (num_heads * dim_v) x H x W
out = Y.permute(0, 2, 3, 1).reshape(b, self.num_heads * v.shape[2], h, w)
return out