holocron.nn.functional

Non-linear activations

holocron.nn.functional.mish(x)[source]

Implements the Mish activation function

Parameters:

x (torch.Tensor) – input tensor

Returns:

output tensor

Return type:

torch.Tensor[x.size()]

holocron.nn.functional.nl_relu(x, beta=1.0, inplace=False)[source]

Implements the natural logarithm ReLU activation function

Parameters:
  • x (torch.Tensor) – input tensor

  • beta (float) – beta used for NReLU

  • inplace (bool) – whether the operation should be performed inplace

Returns:

output tensor

Return type:

torch.Tensor[x.size()]

Loss functions

holocron.nn.functional.focal_loss(x, target, weight=None, ignore_index=-100, reduction='mean', gamma=2)[source]

Implements the focal loss from “Focal Loss for Dense Object Detection”

Parameters:
  • x (torch.Tensor[N, K, ...]) – input tensor

  • target (torch.Tensor[N, ...]) – hard target tensor

  • weight (torch.Tensor[K], optional) – manual rescaling of each class

  • ignore_index (int, optional) – specifies target value that is ignored and do not contribute to gradient

  • reduction (str, optional) – reduction method

  • gamma (float, optional) – gamma parameter of focal loss

Returns:

loss reduced with reduction method

Return type:

torch.Tensor

holocron.nn.functional.multilabel_cross_entropy(x, target, weight=None, ignore_index=-100, reduction='mean')[source]

Implements the cross entropy loss for multi-label targets

Parameters:
  • x (torch.Tensor[N, K, ...]) – input tensor

  • target (torch.Tensor[N, K, ...]) – target tensor

  • weight (torch.Tensor[K], optional) – manual rescaling of each class

  • ignore_index (int, optional) – specifies target value that is ignored and do not contribute to gradient

  • reduction (str, optional) – reduction method

Returns:

loss reduced with reduction method

Return type:

torch.Tensor

holocron.nn.functional.ls_cross_entropy(x, target, weight=None, ignore_index=-100, reduction='mean', eps=0.1)[source]

Implements the label smoothing cross entropy loss from “Attention Is All You Need”

Parameters:
  • x (torch.Tensor[N, K, ...]) – input tensor

  • target (torch.Tensor[N, ...]) – target tensor

  • weight (torch.Tensor[K], optional) – manual rescaling of each class

  • ignore_index (int, optional) – specifies target value that is ignored and do not contribute to gradient

  • reduction (str, optional) – reduction method

  • eps (float, optional) – smoothing factor

Returns:

loss reduced with reduction method

Return type:

torch.Tensor

Downsampling

holocron.nn.functional.concat_downsample2d(x, scale_factor)[source]

Implements a loss-less downsampling operation described in “YOLO9000: Better, Faster, Stronger” by stacking adjacent information on the channel dimension.

Parameters:
  • x (torch.Tensor[N, C, H, W]) – input tensor

  • scale_factor (int) – spatial scaling factor

Returns:

downsampled tensor

Return type:

torch.Tensor[N, 4C, H / 2, W / 2]