holocron.nn¶
An addition to the torch.nn
module of Pytorch to extend the range of neural networks building blocks.
Non-linear activations¶
- class holocron.nn.Mish[source]¶
Implements the Mish activation module from “Mish: A Self Regularized Non-Monotonic Neural Activation Function”
- class holocron.nn.NLReLU(inplace=False)[source]¶
Implements the Natural-Logarithm ReLU activation module from “Natural-Logarithm-Rectified Activation Function in Convolutional Neural Networks”
- Parameters:
inplace (bool) – should the operation be performed inplace
Loss functions¶
- class holocron.nn.FocalLoss(gamma=2, **kwargs)[source]¶
Implementation of Focal Loss as described in “Focal Loss for Dense Object Detection”
- Parameters:
gamma (float, optional) – exponent parameter of the focal loss
weight (torch.Tensor[K], optional) – class weight for loss computation
ignore_index (int, optional) – specifies target value that is ignored and do not contribute to gradient
reduction (str, optional) – type of reduction to apply to the final loss
- class holocron.nn.MultiLabelCrossEntropy(**kwargs)[source]¶
Implementation of the cross-entropy loss for multi-label targets
- Parameters:
weight (torch.Tensor[K], optional) – class weight for loss computation
ignore_index (int, optional) – specifies target value that is ignored and do not contribute to gradient
reduction (str, optional) – type of reduction to apply to the final loss
- class holocron.nn.LabelSmoothingCrossEntropy(eps=0.1, **kwargs)[source]¶
Implementation of the cross-entropy loss with label smoothing on hard target as described in “Attention Is All You Need”
- Parameters:
eps (float, optional) – smoothing factor
weight (torch.Tensor[K], optional) – class weight for loss computation
ignore_index (int, optional) – specifies target value that is ignored and do not contribute to gradient
reduction (str, optional) – type of reduction to apply to the final loss
Loss wrappers¶
- class holocron.nn.MixupLoss(criterion)[source]¶
Implements a Mixup wrapper as described in “mixup: Beyond Empirical Risk Minimization”
- Parameters:
criterion (callable) – initial criterion to be used on normal sample & targets
Downsampling¶
- class holocron.nn.ConcatDownsample2d(scale_factor)[source]¶
Implements a loss-less downsampling operation described in “YOLO9000: Better, Faster, Stronger” by stacking adjacent information on the channel dimension.
- Parameters:
scale_factor (int) – spatial scaling factor