holocron.models

The models subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection and video classification.

The following datasets are available:

Classification

Classification models expect a 4D image tensor as an input (N x C x H x W) and returns a 2D output (N x K). The output represents the classification scores for each output classes.

import holocron.models as models
darknet19 = models.darknet19(num_classes=10)

ResNet

holocron.models.resnet18(pretrained=False, progress=True, **kwargs)[source]

ResNet-18 from “Deep Residual Learning for Image Recognition”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.resnet34(pretrained=False, progress=True, **kwargs)[source]

ResNet-34 from “Deep Residual Learning for Image Recognition”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.resnet50(pretrained=False, progress=True, **kwargs)[source]

ResNet-50 from “Deep Residual Learning for Image Recognition”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.resnet101(pretrained=False, progress=True, **kwargs)[source]

ResNet-101 from “Deep Residual Learning for Image Recognition”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.resnet152(pretrained=False, progress=True, **kwargs)[source]

ResNet-152 from “Deep Residual Learning for Image Recognition”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.resnext50_32x4d(pretrained=False, progress=True, **kwargs)[source]

ResNeXt-50 from “Aggregated Residual Transformations for Deep Neural Networks”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.resnext101_32x8d(pretrained=False, progress=True, **kwargs)[source]

ResNeXt-101 from “Aggregated Residual Transformations for Deep Neural Networks”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.rexnet1_0x(pretrained=False, progress=True, **kwargs)[source]

ReXNet-1.0x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.rexnet1_3x(pretrained=False, progress=True, **kwargs)[source]

ReXNet-1.3x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.rexnet1_5x(pretrained=False, progress=True, **kwargs)[source]

ReXNet-1.5x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.rexnet2_0x(pretrained=False, progress=True, **kwargs)[source]

ReXNet-2.0x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.rexnet2_2x(pretrained=False, progress=True, **kwargs)[source]

ReXNet-2.2x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

Res2Net

class holocron.models.Res2Net(block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=26, scale=4, replace_stride_with_dilation=None, norm_layer=None)[source]

Implements a Res2Net model as described in https://arxiv.org/pdf/1904.01169.pdf

Parameters:
  • block (torch.nn.Module) – class constructor to be used for residual blocks

  • layers (list<python:int>) – layout of layers

  • num_classes (int) – number of output classes

  • zero_init_residual (bool) – whether the residual connections should be initialized at zero

  • groups (int) – number of convolution groups

  • width_per_group (int) – number of channels per group

  • scale (int) – scaling ratio within blocks

  • replace_stride_with_dilation (list<bool>) – whether stride should be traded for dilation

  • norm_layer (torch.nn.Module) – norm layer to be used

holocron.models.res2net(depth, num_classes, width_per_group=26, scale=4, pretrained=False, progress=True, **kwargs)[source]

Instantiate a Res2Net model

Parameters:
  • depth (int) – depth of the model

  • num_classes (int) – number of output classes

  • scale (int) – number of branches for cascade convolutions

  • pretrained (bool) – whether the model should load pretrained weights (ImageNet training)

  • progress (bool) – whether a progress bar should be displayed while downloading pretrained weights

  • **kwargs – optional arguments of torchvision.models.resnet.ResNet

Returns:

loaded Pytorch model

Return type:

model (torch.nn.Module)

Res2NeXt

holocron.models.res2next(depth, num_classes, width_per_group=4, scale=4, pretrained=False, progress=True, **kwargs)[source]

Instantiate a Res2NeXt model

Parameters:
  • depth (int) – depth of the model

  • num_classes (int) – number of output classes

  • scale (int) – number of branches for cascade convolutions

  • pretrained (bool) – whether the model should load pretrained weights (ImageNet training)

  • progress (bool) – whether a progress bar should be displayed while downloading pretrained weights

  • **kwargs – optional arguments of torchvision.models.resnet.ResNet

Returns:

loaded Pytorch model

Return type:

model (torch.nn.Module)

Darknet

holocron.models.darknet24(pretrained=False, progress=True, **kwargs)[source]

Darknet-24 from “You Only Look Once: Unified, Real-Time Object Detection”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.darknet19(pretrained=False, progress=True, **kwargs)[source]

Darknet-19 from “YOLO9000: Better, Faster, Stronger”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

holocron.models.darknet53(pretrained=False, progress=True, **kwargs)[source]

Darknet-53 from “YOLOv3: An Incremental Improvement”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

classification model

Return type:

torch.nn.Module

Object Detection

Object detection models expect a 4D image tensor as an input (N x C x H x W) and returns a list of dictionaries. Each dictionary has 3 keys: box coordinates, classification probability, classification label.

import holocron.models as models
yolov2 = models.yolov2(num_classes=10)

YOLO

holocron.models.yolov1(pretrained=False, progress=True, pretrained_backbone=True, **kwargs)[source]

YOLO model from “You Only Look Once: Unified, Real-Time Object Detection”.

YOLO’s particularity is to make predictions in a grid (same size as last feature map). For each grid cell, the model predicts classification scores and a fixed number of boxes (default: 2). Each box in the cell gets 5 predictions: an objectness score, and 4 coordinates. The 4 coordinates are composed of: the 2-D coordinates of the predicted box center (relative to the cell), and the width and height of the predicted box (relative to the whole image).

For training, YOLO uses a multi-part loss whose components are computed by:

\[\mathcal{L}_{coords} = \sum\limits_{i=0}^{S^2} \sum\limits_{j=0}^{B} \mathbb{1}_{ij}^{obj} \Big[ (x_{ij} - \hat{x}_{ij})² + (y_{ij} - \hat{y}_{ij})² + (\sqrt{w_{ij}} - \sqrt{\hat{w}_{ij}})² + (\sqrt{h_{ij}} - \sqrt{\hat{h}_{ij}})² \Big]\]

where \(S\) is size of the output feature map (7 for an input size \((448, 448)\)), \(B\) is the number of anchor boxes per grid cell (default: 2), \(\mathbb{1}_{ij}^{obj}\) equals to 1 if a GT center falls inside the i-th grid cell and among the anchor boxes of that cell, has the highest IoU with the j-th box else 0, \((x_{ij}, y_{ij}, w_{ij}, h_{ij})\) are the coordinates of the ground truth assigned to the j-th anchor box of the i-th grid cell, and \((\hat{x}_{ij}, \hat{y}_{ij}, \hat{w}_{ij}, \hat{h}_{ij})\) are the coordinate predictions for the j-th anchor box of the i-th grid cell.

\[\mathcal{L}_{objectness} = \sum\limits_{i=0}^{S^2} \sum\limits_{j=0}^{B} \Big[ \mathbb{1}_{ij}^{obj} \Big(C_{ij} - \hat{C}_{ij} \Big)^2 + \lambda_{noobj} \mathbb{1}_{ij}^{noobj} \Big(C_{ij} - \hat{C}_{ij} \Big)^2 \Big]\]

where \(\lambda_{noobj}\) is a positive coefficient (default: 0.5), \(\mathbb{1}_{ij}^{noobj} = 1 - \mathbb{1}_{ij}^{obj}\), \(C_{ij}\) equals the Intersection Over Union between the j-th anchor box in the i-th grid cell and its matched ground truth box if that box is matched with a ground truth else 0, and \(\hat{C}_{ij}\) is the objectness score of the j-th anchor box in the i-th grid cell..

\[\mathcal{L}_{classification} = \sum\limits_{i=0}^{S^2} \mathbb{1}_{i}^{obj} \sum\limits_{c \in classes} (p_i(c) - \hat{p}_i(c))^2\]

where \(\mathbb{1}_{i}^{obj}\) equals to 1 if a GT center falls inside the i-th grid cell else 0, \(p_i(c)\) equals 1 if the assigned ground truth to the i-th cell is classified as class \(c\), and \(\hat{p}_i(c)\) is the predicted probability of class \(c\) in the i-th cell.

And the full loss is given by:

\[\mathcal{L}_{YOLOv1} = \lambda_{coords} \cdot \mathcal{L}_{coords} + \mathcal{L}_{objectness} + \mathcal{L}_{classification}\]

where \(\lambda_{coords}\) is a positive coefficient (default: 5).

Parameters:
  • pretrained (bool, optional) – If True, returns a model pre-trained on ImageNet

  • progress (bool, optional) – If True, displays a progress bar of the download to stderr

  • pretrained_backbone (bool, optional) – If True, backbone parameters will have been pretrained on Imagenette

Returns:

detection module

Return type:

torch.nn.Module

holocron.models.yolov2(pretrained=False, progress=True, pretrained_backbone=True, **kwargs)[source]

YOLOv2 model from “YOLO9000: Better, Faster, Stronger”.

YOLOv2 improves upon YOLO by raising the number of boxes predicted by grid cell (default: 5), introducing bounding box priors and predicting class scores for each anchor box in the grid cell.

For training, YOLOv2 uses the same multi-part loss as YOLO apart from its classification loss:

\[\mathcal{L}_{classification} = \sum\limits_{i=0}^{S^2} \sum\limits_{j=0}^{B} \mathbb{1}_{ij}^{obj} \sum\limits_{c \in classes} (p_{ij}(c) - \hat{p}_{ij}(c))^2\]

where \(S\) is size of the output feature map (13 for an input size \((416, 416)\)), \(B\) is the number of anchor boxes per grid cell (default: 5), \(\mathbb{1}_{ij}^{obj}\) equals to 1 if a GT center falls inside the i-th grid cell and among the anchor boxes of that cell, has the highest IoU with the j-th box else 0, \(p_{ij}(c)\) equals 1 if the assigned ground truth to the j-th anchor box of the i-th cell is classified as class \(c\), and \(\hat{p}_{ij}(c)\) is the predicted probability of class \(c\) for the j-th anchor box in the i-th cell.

Parameters:
  • pretrained (bool, optional) – If True, returns a model pre-trained on ImageNet

  • progress (bool, optional) – If True, displays a progress bar of the download to stderr

  • pretrained_backbone (bool, optional) – If True, backbone parameters will have been pretrained on Imagenette

Returns:

detection module

Return type:

torch.nn.Module

Semantic Segmentation

Semantic segmentation models expect a 4D image tensor as an input (N x C x H x W) and returns a classification score tensor of size (N x K x Ho x Wo).

import holocron.models as models
unet = models.unet(num_classes=10)

U-Net

holocron.models.unet(pretrained=False, progress=True, **kwargs)[source]

U-Net from “U-Net: Convolutional Networks for Biomedical Image Segmentation”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

semantic segmentation model

Return type:

torch.nn.Module

holocron.models.unetp(pretrained=False, progress=True, **kwargs)[source]

UNet+ from “UNet++: A Nested U-Net Architecture for Medical Image Segmentation”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

semantic segmentation model

Return type:

torch.nn.Module

holocron.models.unetpp(pretrained=False, progress=True, **kwargs)[source]

UNet++ from “UNet++: A Nested U-Net Architecture for Medical Image Segmentation”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

semantic segmentation model

Return type:

torch.nn.Module

holocron.models.unet3p(pretrained=False, progress=True, **kwargs)[source]

UNet3+ from “UNet 3+: A Full-Scale Connected UNet For Medical Image Segmentation”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • progress (bool) – If True, displays a progress bar of the download to stderr

Returns:

semantic segmentation model

Return type:

torch.nn.Module