holocron.nn.functional¶
Non-linear activations¶
- holocron.nn.functional.silu(x)[source]¶
Implements the SiLU activation function
- Parameters:
x (torch.Tensor) – input tensor
- Returns:
output tensor
- Return type:
torch.Tensor[x.size()]
- holocron.nn.functional.mish(x)[source]¶
Implements the Mish activation function
- Parameters:
x (torch.Tensor) – input tensor
- Returns:
output tensor
- Return type:
torch.Tensor[x.size()]
- holocron.nn.functional.nl_relu(x, beta=1.0, inplace=False)[source]¶
Implements the natural logarithm ReLU activation function
- Parameters:
x (torch.Tensor) – input tensor
beta (float) – beta used for NReLU
inplace (bool) – whether the operation should be performed inplace
- Returns:
output tensor
- Return type:
torch.Tensor[x.size()]
Loss functions¶
- holocron.nn.functional.focal_loss(x, target, weight=None, ignore_index=-100, reduction='mean', gamma=2)[source]¶
Implements the focal loss from “Focal Loss for Dense Object Detection”
- Parameters:
x (torch.Tensor[N, K, ...]) – input tensor
target (torch.Tensor[N, ...]) – hard target tensor
weight (torch.Tensor[K], optional) – manual rescaling of each class
ignore_index (int, optional) – specifies target value that is ignored and do not contribute to gradient
reduction (str, optional) – reduction method
gamma (float, optional) – gamma parameter of focal loss
- Returns:
loss reduced with reduction method
- Return type:
- holocron.nn.functional.multilabel_cross_entropy(x, target, weight=None, ignore_index=-100, reduction='mean')[source]¶
Implements the cross entropy loss for multi-label targets
- Parameters:
x (torch.Tensor[N, K, ...]) – input tensor
target (torch.Tensor[N, K, ...]) – target tensor
weight (torch.Tensor[K], optional) – manual rescaling of each class
ignore_index (int, optional) – specifies target value that is ignored and do not contribute to gradient
reduction (str, optional) – reduction method
- Returns:
loss reduced with reduction method
- Return type:
- holocron.nn.functional.ls_cross_entropy(x, target, weight=None, ignore_index=-100, reduction='mean', eps=0.1)[source]¶
Implements the label smoothing cross entropy loss from “Attention Is All You Need”
- Parameters:
x (torch.Tensor[N, K, ...]) – input tensor
target (torch.Tensor[N, ...]) – target tensor
weight (torch.Tensor[K], optional) – manual rescaling of each class
ignore_index (int, optional) – specifies target value that is ignored and do not contribute to gradient
reduction (str, optional) – reduction method
eps (float, optional) – smoothing factor
- Returns:
loss reduced with reduction method
- Return type:
Convolutions¶
- holocron.nn.functional.norm_conv2d(x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, eps=1e-14)[source]¶
Implements a normalized convolution operations in 2D. Based on the implementation by the paper’s author. See
NormConv2d
for details and output shape.- Parameters:
x (torch.Tensor[N, in_channels, H, W]) – input tensor
weight (torch.Tensor[out_channels, in_channels, Kh, Kw]) – filters
bias (torch.Tensor[out_channels], optional) – optional bias tensor of shape (out_channels). Default:
None
stride (int, optional) – the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1
padding (int, optional) – implicit paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: 0
dilation (int, optional) – the spacing between kernel elements. Can be a single number or a tuple (dH, dW). Default: 1
groups (int, optional) – split input into groups, in_channels should be divisible by the number of groups. Default: 1
eps (float, optional) – a value added to the denominator for numerical stability. Default: 1e-14
- Examples::
>>> # With square kernels and equal stride >>> filters = torch.randn(8,4,3,3) >>> inputs = torch.randn(1,4,5,5) >>> F.norm_conv2d(inputs, filters, padding=1)
- holocron.nn.functional.add2d(x, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, normalize_slices=False, eps=1e-14)[source]¶
Implements an adder operation in 2D from “AdderNet: Do We Really Need Multiplications in Deep Learning?”. See
Add2d
for details and output shape.- Parameters:
x (torch.Tensor[N, in_channels, H, W]) – input tensor
weight (torch.Tensor[out_channels, in_channels, Kh, Kw]) – filters
bias (torch.Tensor[out_channels], optional) – optional bias tensor of shape (out_channels). Default:
None
stride (int, optional) – the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1
padding (int, optional) – implicit paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: 0
dilation (int, optional) – the spacing between kernel elements. Can be a single number or a tuple (dH, dW). Default: 1
groups (int, optional) – split input into groups, in_channels should be divisible by the number of groups. Default: 1
normalize_slices (bool, optional) – whether input slices should be normalized
eps (float, optional) – a value added to the denominator for numerical stability. Default: 1e-14
- Examples::
>>> # With square kernels and equal stride >>> filters = torch.randn(8,4,3,3) >>> inputs = torch.randn(1,4,5,5) >>> F.norm_conv2d(inputs, filters, padding=1)
Regularization layers¶
- holocron.nn.functional.dropblock2d(x, drop_prob, block_size, inplace=False)[source]¶
Implements the dropblock operation from “DropBlock: A regularization method for convolutional networks”
Downsampling¶
- holocron.nn.functional.concat_downsample2d(x, scale_factor)[source]¶
Implements a loss-less downsampling operation described in “YOLO9000: Better, Faster, Stronger” by stacking adjacent information on the channel dimension.
- Parameters:
x (torch.Tensor[N, C, H, W]) – input tensor
scale_factor (int) – spatial scaling factor
- Returns:
downsampled tensor
- Return type:
torch.Tensor[N, scale_factor ** 2 * C, H / scale_factor, W / scale_factor]