Source code for torchscan.crawler

# Copyright (C) 2020-2022, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

import os
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union

import torch
from torch.nn import Module

from .modules import module_dmas, module_flops, module_macs, module_rf
from .process import get_process_gpu_ram
from .utils import aggregate_info, format_info

__all__ = ["crawl_module", "summary"]


def apply(module: Module, fn: Callable[[Module, str], None], name: Optional[str] = None) -> None:
    """Modified version of `torch.nn.Module.apply` method

    Args:
        module: target module
        fn: function to apply to each module
        name: name of the current module
    """

    if name is None:
        name = module.__class__.__name__.lower()
    fn(module, name)
    for n, m in module.named_children():
        apply(m, fn, f"{name}.{n}")


[docs] def crawl_module( module: Module, input_shape: Union[List[Tuple[int, ...]], Tuple[int, ...]], dtype: Optional[Union[torch.dtype, Iterable[torch.dtype]]] = None, ) -> Dict[str, Any]: """Retrieves module information for an expected input tensor shape >>> import torch.nn as nn >>> from torchscan import summary >>> mod = nn.Conv2d(3, 8, 3) >>> module_info = crawl_module(mod, (3, 224, 224)) Args: module: module to inspect input_shape: expected input shapes dtype: data type of each input argument to the module Returns: layer and overhead information """ # Get device and data types from model p = next(module.parameters()) device = p.device cuda_overhead, framework_overhead = 0.0, 0.0 if torch.cuda.is_available(): # Process RAM - allocator RAM cuda_overhead = get_process_gpu_ram(os.getpid()) - (torch.cuda.memory_reserved() / 1024**2) # Allocator RAM - Used RAM framework_overhead = (torch.cuda.memory_reserved() - torch.cuda.memory_allocated()) / 1024**2 # input if not isinstance(input_shape, list): input_shape = [input_shape] if dtype is None: dtype = p.data.dtype if isinstance(dtype, torch.dtype): dtype = [dtype] * len(input_shape) # Tensor arguments input_ts = [ torch.rand(1, *in_shape).to(dtype=_dtype, device=device) for in_shape, _dtype in zip(input_shape, dtype) ] pre_fw_handles, post_fw_handles = [], [] pre_hook_tracker: Dict[int, Any] = {} post_hook_tracker: Dict[int, Any] = {} # Hook definition def _hook_info(module: Module, name: str) -> None: def _pre_hook(module: Module, inp: torch.Tensor) -> None: """Pre-forward hook""" # Check that another hook has not been triggered at this forward stage if not pre_hook_tracker[id(module)]["is_used"] and ( pre_hook_tracker[id(module)]["target"] == pre_hook_tracker[id(module)]["current"] ): # Add information # Params grad_params, nograd_params, param_size = 0, 0, 0 num_buffers, buffer_size = 0, 0 is_shared = False if not any(module.children()): # Parameters for p in module.parameters(): if id(p) not in param_ids: if p.requires_grad: grad_params += p.data.numel() else: nograd_params += p.data.numel() param_size += p.data.numel() * p.data.element_size() param_ids.append(id(p)) else: is_shared = True # Buffers for b in module.buffers(): if id(b) not in param_ids: num_buffers += b.numel() buffer_size += b.numel() * b.element_size() param_ids.append(id(b)) else: is_shared = True if call_idxs.get(id(module)) is None: call_idxs[id(module)] = [len(info)] else: call_idxs[id(module)].append(len(info)) info.append( dict( name=name.rpartition(".")[-1], depth=len(name.split(".")) - 1, type=module.__class__.__name__, input_shape=(-1, *inp[0][0].shape[1:]), output_shape=None, grad_params=grad_params, nograd_params=nograd_params, param_size=param_size, num_buffers=num_buffers, buffer_size=buffer_size, flops=0, macs=0, dmas=0, rf=1, s=1, p=0, is_shared=is_shared, is_leaf=not any(module.children()), ) ) # Mark the next hook for execution pre_hook_tracker[id(module)]["target"] += 1 # Current pass already used one of the hooks pre_hook_tracker[id(module)]["is_used"] = True pre_hook_tracker[id(module)]["current"] += 1 # All the hooks have been checked, reset the temporary values if pre_hook_tracker[id(module)]["current"] == len(module._forward_pre_hooks): pre_hook_tracker[id(module)]["current"] = 0 pre_hook_tracker[id(module)]["is_used"] = False def _fwd_hook(module: Module, inputs: Tuple[torch.Tensor, ...], out: torch.Tensor) -> None: """Post-forward hook""" # Check that another hook has not been triggered at this forward stage if not post_hook_tracker[id(module)]["is_used"] and ( post_hook_tracker[id(module)]["target"] == post_hook_tracker[id(module)]["current"] ): # Write information # Retrieve forward index if len(call_idxs[id(module)]) == 1: fw_idx = call_idxs[id(module)][0] else: # The first dictionary with output_shape=None is the correct one for _idx in call_idxs[id(module)]: if info[_idx]["output_shape"] is None: fw_idx = _idx break if any(module.children()): tot_flops, tot_macs, tot_dmas = 0, 0, 0 current_rf, current_stride, current_padding = 1.0, 1.0, 0.0 else: # Compute stats for standalone layers tot_flops = module_flops(module, inputs, out) tot_macs = module_macs(module, inputs[0], out) tot_dmas = module_dmas(module, inputs[0], out) current_rf, current_stride, current_padding = module_rf(module, inputs[0], out) # Update layer information info[fw_idx]["output_shape"] = (-1, *out.shape[1:]) # Add them, since some modules can be used several times info[fw_idx]["flops"] = tot_flops info[fw_idx]["macs"] = tot_macs info[fw_idx]["dmas"] = tot_dmas # Compute receptive field info[fw_idx]["rf"] = current_rf info[fw_idx]["s"] = current_stride info[fw_idx]["p"] = current_padding # Mark the next hook for execution post_hook_tracker[id(module)]["target"] += 1 # Current pass already used one of the hooks post_hook_tracker[id(module)]["is_used"] = True post_hook_tracker[id(module)]["current"] += 1 # All the hooks have been checked, reset the temporary values if post_hook_tracker[id(module)]["current"] == len(module._forward_pre_hooks): post_hook_tracker[id(module)]["current"] = 0 post_hook_tracker[id(module)]["is_used"] = False pre_fw_handles.append(module.register_forward_pre_hook(_pre_hook)) post_fw_handles.append(module.register_forward_hook(_fwd_hook)) # Handle modules that are used multiple times (with several hooks) pre_hook_tracker[id(module)] = dict(current=0, target=0, is_used=False) post_hook_tracker[id(module)] = dict(current=0, target=0, is_used=False) # Hook model info: List[Dict[str, Any]] = [] param_ids: List[int] = [] call_idxs: Dict[int, List[int]] = {} apply(module, _hook_info) # Forward with torch.no_grad(): module(*input_ts) # Removes all hooks using their handles for handle in pre_fw_handles: handle.remove() for handle in post_fw_handles: handle.remove() reserved_ram, diff_ram = 0.0, 0.0 if torch.cuda.is_available(): reserved_ram = torch.cuda.memory_reserved() / 1024**2 diff_ram = (torch.cuda.memory_reserved() - torch.cuda.memory_allocated()) / 1024**2 torch.cuda.synchronize() torch.cuda.empty_cache() grad_params, nograd_params, param_size = 0, 0, 0 num_buffers, buffer_size = 0, 0 for p in module.parameters(): if p.requires_grad: grad_params += p.data.numel() else: nograd_params += p.data.numel() param_size += p.data.numel() * p.data.element_size() for b in module.buffers(): num_buffers += b.numel() buffer_size += b.numel() * b.element_size() # Update cumulative receptive field _rf, _s, _p = 1, 1, 0 for fw_idx, _layer in enumerate(info): _rf += _s * (_layer["rf"] - 1) _p += _s * _layer["p"] _s *= _layer["s"] info[fw_idx]["rf"] = _rf info[fw_idx]["s"] = _s info[fw_idx]["p"] = _p return dict( overheads=dict( cuda=dict( pre=cuda_overhead, fwd=get_process_gpu_ram(os.getpid()) - reserved_ram, ), framework=dict(pre=framework_overhead, fwd=diff_ram), ), layers=info, overall=dict( grad_params=grad_params, nograd_params=nograd_params, param_size=param_size, num_buffers=num_buffers, buffer_size=buffer_size, ), )
[docs] def summary( module: Module, input_shape: Tuple[int, ...], wrap_mode: str = "mid", max_depth: Optional[int] = None, receptive_field: bool = False, effective_rf_stats: bool = False, ) -> None: """Print module summary for an expected input tensor shape >>> import torch.nn as nn >>> from torchscan import summary >>> mod = nn.Conv2d(3, 8, 3) >>> summary(mod, (3, 224, 224), receptive_field=True) Args: module: module to inspect input_shape: expected input shapes (don't include batch size) wrap_mode: if a value is too long, where the wrapping should be performed max_depth: maximum depth of layer information receptive_field: whether receptive field estimation should be performed effective_rf_stats: if `receptive_field` is True, displays effective stride and padding """ # Get the summary dict module_info = crawl_module(module, input_shape) # Aggregate until max_depth if isinstance(max_depth, int): module_info = aggregate_info(module_info, max_depth) # Format it and print it print(format_info(module_info, wrap_mode, receptive_field, effective_rf_stats))