torchscan¶
Crawler¶
- torchscan.crawl_module(module: Module, input_shape: List[Tuple[int, ...]] | Tuple[int, ...], dtype: dtype | Iterable[dtype] | None = None) Dict[str, Any] [source]¶
Retrieves module information for an expected input tensor shape
>>> import torch.nn as nn >>> from torchscan import summary >>> mod = nn.Conv2d(3, 8, 3) >>> module_info = crawl_module(mod, (3, 224, 224))
- Parameters:
module – module to inspect
input_shape – expected input shapes
dtype – data type of each input argument to the module
- Returns:
layer and overhead information
- torchscan.summary(module: Module, input_shape: Tuple[int, ...], wrap_mode: str = 'mid', max_depth: int | None = None, receptive_field: bool = False, effective_rf_stats: bool = False) None [source]¶
Print module summary for an expected input tensor shape
>>> import torch.nn as nn >>> from torchscan import summary >>> mod = nn.Conv2d(3, 8, 3) >>> summary(mod, (3, 224, 224), receptive_field=True)
- Parameters:
module – module to inspect
input_shape – expected input shapes (don’t include batch size)
wrap_mode – if a value is too long, where the wrapping should be performed
max_depth – maximum depth of layer information
receptive_field – whether receptive field estimation should be performed
effective_rf_stats – if receptive_field is True, displays effective stride and padding