Source code for torchscan.modules.flops

# Copyright (C) 2020-2022, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

import warnings
from functools import reduce
from operator import mul
from typing import Tuple

import torch
from torch import Tensor, nn
from torch.nn import Module
from torch.nn.modules.batchnorm import _BatchNorm
from torch.nn.modules.conv import _ConvNd, _ConvTransposeNd
from torch.nn.modules.pooling import _AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd

__all__ = ["module_flops"]


[docs] def module_flops(module: Module, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """Estimate the number of floating point operations performed by the module Args: module: PyTorch module inputs: input to the module out: output of the module Returns: number of FLOPs """ if isinstance(module, (nn.Identity, nn.Flatten)): return 0 elif isinstance(module, nn.Linear): return flops_linear(module, inputs) elif isinstance(module, nn.ReLU): return flops_relu(module, inputs) elif isinstance(module, nn.ELU): return flops_elu(module, inputs) elif isinstance(module, nn.LeakyReLU): return flops_leakyrelu(module, inputs) elif isinstance(module, nn.ReLU6): return flops_relu6(module, inputs) elif isinstance(module, nn.Tanh): return flops_tanh(module, inputs) elif isinstance(module, nn.Sigmoid): return flops_sigmoid(module, inputs) elif isinstance(module, _ConvTransposeNd): return flops_convtransposend(module, inputs, out) elif isinstance(module, _ConvNd): return flops_convnd(module, inputs, out) elif isinstance(module, _BatchNorm): return flops_bn(module, inputs) elif isinstance(module, _MaxPoolNd): return flops_maxpool(module, inputs, out) elif isinstance(module, _AvgPoolNd): return flops_avgpool(module, inputs, out) elif isinstance(module, _AdaptiveMaxPoolNd): return flops_adaptive_maxpool(module, inputs, out) elif isinstance(module, _AdaptiveAvgPoolNd): return flops_adaptive_avgpool(module, inputs, out) elif isinstance(module, nn.Dropout): return flops_dropout(module, inputs) elif isinstance(module, nn.Transformer): return flops_transformer(module, inputs) else: warnings.warn(f"Module type not supported: {module.__class__.__name__}") return 0
def flops_linear(module: nn.Linear, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.Linear`""" # batch size * out_chan * in_chan num_out_feats = module.out_features * reduce(mul, inputs[0].shape[:-1]) mm_flops = num_out_feats * (2 * module.in_features - 1) bias_flops = num_out_feats if module.bias is not None else 0 return mm_flops + bias_flops def flops_sigmoid(module: nn.Sigmoid, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.Sigmoid`""" # For each element, mul by -1, exp it, add 1, div return inputs[0].numel() * 4 def flops_relu(module: nn.ReLU, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.ReLU`""" # Each element is compared to 0 return inputs[0].numel() def flops_elu(module: nn.ELU, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.ELU`""" # For each element, compare it to 0, exp it, sub 1, mul by alpha, compare it to 0 and sum both return inputs[0].numel() * 6 def flops_leakyrelu(module: nn.LeakyReLU, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.LeakyReLU`""" # For each element, compare it to 0 (max), compare it to 0 (min), mul by slope and sum both return inputs[0].numel() * 4 def flops_relu6(module: nn.ReLU6, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.ReLU6`""" # For each element, compare it to 0 (max), compare it to 0 (min), mul by slope and sum both return inputs[0].numel() * 2 def flops_tanh(module: nn.Tanh, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.Tanh`""" # For each element, exp it, mul by -1 and exp it, divide the sub by the add return inputs[0].numel() * 6 def flops_dropout(module: nn.Dropout, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.Dropout`""" if module.p > 0: # Sample a random number for each input element return inputs[0].numel() else: return 0 def flops_convtransposend(module: _ConvTransposeNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.conv._ConvTranposeNd`""" # Padding (# cf. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py#L496-L532) # Define min and max sizes padding_flops = len(module.kernel_size) * 8 # Once padding is determined, the operations are almost identical to those of a convolution conv_flops = flops_convnd(module, inputs, out) return padding_flops + conv_flops def flops_convnd(module: _ConvNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.conv._ConvNd`""" # For each position, # mult = kernel size, # adds = kernel size - 1 window_flops_per_chan = 2 * reduce(mul, module.kernel_size) - 1 # Connections to input channels is controlled by the group parameter effective_in_chan = inputs[0].shape[1] // module.groups # N * flops + (N - 1) additions window_flops = effective_in_chan * window_flops_per_chan + (effective_in_chan - 1) conv_flops = out.numel() * window_flops # Each output element gets a bias addition bias_flops = out.numel() if module.bias is not None else 0 return conv_flops + bias_flops def flops_bn(module: _BatchNorm, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.modules.batchnorm._BatchNorm`""" # for each channel, add eps and running_var, sqrt it norm_ops = module.num_features * 2 # For each element, sub running_mean, div by denom norm_ops += inputs[0].numel() * 2 # For each element, mul by gamma, add beta scale_ops = inputs[0].numel() * 2 if module.affine else 0 bn_flops = norm_ops + scale_ops # Count tracking stats update ops # cf. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py#L94-L101 tracking_flops = 0 if module.track_running_stats and module.training: # exponential_average_factor if module.momentum is None: tracking_flops += 1 # running_mean: by channel, sum values and div by batch size tracking_flops += inputs[0].numel() # running_var: by channel, sub mean and square values, sum them, divide by batch size tracking_flops += 3 * inputs[0].numel() # Update both runnning stat: rescale previous value (mul by N), add it the new one, then div by (N + 1) tracking_flops += 2 * module.num_features * 3 return bn_flops + tracking_flops def flops_maxpool(module: _MaxPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.pooling._MaxPoolNd`""" k_size = reduce(mul, module.kernel_size) if isinstance(module.kernel_size, tuple) else module.kernel_size # for each spatial output element, check max element in kernel scope return out.numel() * (k_size - 1) def flops_avgpool(module: _AvgPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.pooling._AvgPoolNd`""" k_size = reduce(mul, module.kernel_size) if isinstance(module.kernel_size, tuple) else module.kernel_size # for each spatial output element, sum elements in kernel scope and div by kernel size return out.numel() * (k_size - 1 + inputs[0].ndim - 2) def flops_adaptive_maxpool(module: _AdaptiveMaxPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.pooling._AdaptiveMaxPoolNd`""" # Approximate kernel_size using ratio of spatial shapes between input and output kernel_size = tuple( i_size // o_size if (i_size % o_size) == 0 else i_size - o_size * (i_size // o_size) + 1 for i_size, o_size in zip(inputs[0].shape[2:], out.shape[2:]) ) # for each spatial output element, check max element in kernel scope return out.numel() * (reduce(mul, kernel_size) - 1) def flops_adaptive_avgpool(module: _AdaptiveAvgPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.pooling._AdaptiveAvgPoolNd`""" # Approximate kernel_size using ratio of spatial shapes between input and output kernel_size = tuple( i_size // o_size if (i_size % o_size) == 0 else i_size - o_size * (i_size // o_size) + 1 for i_size, o_size in zip(inputs[0].shape[2:], out.shape[2:]) ) # for each spatial output element, sum elements in kernel scope and div by kernel size return out.numel() * (reduce(mul, kernel_size) - 1 + len(kernel_size)) def flops_layernorm(module: nn.LayerNorm, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.modules.batchnorm._BatchNorm`""" # Compute current mean norm_ops = reduce(mul, module.normalized_shape) * inputs[0].shape[: -len(module.normalized_shape)].numel() # current var (sub the mean, square it, sum them, divide by remaining shape) norm_ops += 3 * inputs[0].numel() # for each channel, add eps and running_var, sqrt it norm_ops += reduce(mul, module.normalized_shape) * 2 # For each element, sub running_mean, div by denom norm_ops += inputs[0].numel() * 2 # For each element, mul by gamma, add beta scale_ops = inputs[0].numel() * 2 if module.elementwise_affine else 0 return norm_ops + scale_ops def flops_mha(module: nn.MultiheadAttention, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.MultiheadAttention`""" # Input projection q, k, _ = inputs[:3] batch_size = q.shape[1] if module._qkv_same_embed_dim: tot_flops = 3 * flops_linear( nn.Linear( module.in_proj_weight.shape[1], module.in_proj_weight.shape[0], bias=module.in_proj_bias is not None ), (torch.empty((batch_size, module.in_proj_weight.shape[1])),), ) else: tot_flops = flops_linear( nn.Linear( module.q_proj_weight.shape[1], module.q_proj_weight.shape[0], bias=module.in_proj_bias is not None ), (torch.empty((batch_size, module.q_proj_weight.shape[1])),), ) tot_flops += flops_linear( nn.Linear(module.k_proj_weight.shape[1], module.k_proj_weight.shape[0], bias=module.bias_k is not None), (torch.empty((batch_size, module.k_proj_weight.shape[1])),), ) tot_flops += flops_linear( nn.Linear(module.v_proj_weight.shape[1], module.v_proj_weight.shape[0], bias=module.bias_v is not None), (torch.empty((batch_size, module.v_proj_weight.shape[1])),), ) # Q (L, B, embed_dim) --> (B * num_heads, L, head_dim=embed_dim / num_heads) # Scaled dot-product attention (cf. https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py#L5083) # sqrt the embedding dim and div the Q with it tot_flops += 1 + batch_size * module.num_heads * module.head_dim * q.shape[0] # batched matrix multiply tot_flops += batch_size * module.num_heads * (q.shape[0] * k.shape[0]) * (2 * module.head_dim - 1) # attention mask if inputs[-1] is not None: tot_flops += batch_size * module.num_heads * (q.shape[0] * k.shape[0]) # softmax tot_flops += batch_size * module.num_heads * q.shape[0] * (3 * k.shape[0] - 1) # dropout if module.dropout > 0: tot_flops += batch_size * module.num_heads * (q.shape[0] * k.shape[0]) # batched matrix multiply tot_flops += batch_size * module.num_heads * (q.shape[0] * module.head_dim) * (2 * k.shape[0] - 1) # Output linear projection tot_flops += flops_linear(module.out_proj, (torch.empty((q.shape[0], module.out_proj.in_features)),)) return tot_flops def flops_transformer_encoderlayer(module: nn.TransformerEncoderLayer, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.TransformerEncoderLayer`""" tot_flops = flops_mha(module.self_attn, (inputs[0],) * 3) tot_flops += flops_dropout(module.dropout1, inputs) + inputs[0].numel() tot_flops += flops_layernorm(module.norm1, inputs) # get linear 1 output size tot_flops += flops_linear(module.linear1, inputs) tot_flops += module_flops(module.activation, inputs, torch.empty(1)) # type: ignore[arg-type] tot_flops += flops_dropout(module.dropout, inputs) + flops_linear(module.linear2, inputs) # get linear 2 output size tot_flops += flops_dropout(module.dropout2, inputs) + inputs[0].numel() tot_flops += flops_layernorm(module.norm2, inputs) return tot_flops def flops_transformer_decoderlayer(module: nn.TransformerDecoderLayer, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.TransformerEncoderLayer`""" tot_flops = flops_mha(module.self_attn, (inputs[0],) * 3) tot_flops += flops_dropout(module.dropout1, inputs) + inputs[0].numel() tot_flops += flops_layernorm(module.norm1, inputs) tot_flops = flops_mha(module.multihead_attn, (inputs[0], inputs[1], inputs[1])) tot_flops += flops_dropout(module.dropout2, inputs) + inputs[0].numel() tot_flops += flops_layernorm(module.norm2, inputs) # get linear 1 output size tot_flops += flops_linear(module.linear1, inputs) tot_flops += module_flops(module.activation, inputs, torch.empty(1)) # type: ignore[arg-type] tot_flops += flops_dropout(module.dropout, inputs) + flops_linear(module.linear2, inputs) # get linear 2 output size tot_flops += flops_dropout(module.dropout3, inputs) + inputs[0].numel() tot_flops += flops_layernorm(module.norm3, inputs) return tot_flops def flops_transformer(module: nn.Transformer, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.Transformer`""" encoder_flops = len(module.encoder.layers) * flops_transformer_encoderlayer(module.encoder.layers[0], inputs) if module.encoder.norm is not None: encoder_flops += flops_layernorm(module.encoder.norm, inputs) decoder_flops = len(module.decoder.layers) * flops_transformer_decoderlayer(module.decoder.layers[0], inputs) if module.decoder.norm is not None: decoder_flops += flops_layernorm(module.decoder.norm, inputs) return encoder_flops + decoder_flops