# Copyright (C) 2020-2022, François-Guillaume Fernandez.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
import warnings
from functools import reduce
from operator import mul
from torch import Tensor, nn
from torch.nn import Module
from torch.nn.modules.batchnorm import _BatchNorm
from torch.nn.modules.conv import _ConvNd, _ConvTransposeNd
from torch.nn.modules.pooling import _AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd
__all__ = ["module_macs"]
[docs]
def module_macs(module: Module, inp: Tensor, out: Tensor) -> int:
"""Estimate the number of multiply-accumulation operations performed by the module
Args:
module (torch.nn.Module): PyTorch module
inp (torch.Tensor): input to the module
out (torch.Tensor): output of the module
Returns:
int: number of MACs
"""
if isinstance(module, nn.Linear):
return macs_linear(module, inp, out)
elif isinstance(module, (nn.Identity, nn.ReLU, nn.ELU, nn.LeakyReLU, nn.ReLU6, nn.Tanh, nn.Sigmoid, nn.Flatten)):
return 0
elif isinstance(module, _ConvTransposeNd):
return macs_convtransposend(module, inp, out)
elif isinstance(module, _ConvNd):
return macs_convnd(module, inp, out)
elif isinstance(module, _BatchNorm):
return macs_bn(module, inp, out)
elif isinstance(module, _MaxPoolNd):
return macs_maxpool(module, inp, out)
elif isinstance(module, _AvgPoolNd):
return macs_avgpool(module, inp, out)
elif isinstance(module, _AdaptiveMaxPoolNd):
return macs_adaptive_maxpool(module, inp, out)
elif isinstance(module, _AdaptiveAvgPoolNd):
return macs_adaptive_avgpool(module, inp, out)
elif isinstance(module, nn.Dropout):
return 0
else:
warnings.warn(f"Module type not supported: {module.__class__.__name__}")
return 0
def macs_linear(module: nn.Linear, inp: Tensor, out: Tensor) -> int:
"""MACs estimation for `torch.nn.Linear`"""
# batch size * out_chan * macs_per_elt (bias already counted in accumulation)
mm_mac = module.in_features * reduce(mul, out.shape)
return mm_mac
def macs_convtransposend(module: _ConvTransposeNd, inp: Tensor, out: Tensor) -> int:
"""MACs estimation for `torch.nn.modules.conv._ConvTransposeNd`"""
# Padding (# cf. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py#L496-L532)
# Define min and max sizes, then subtract them
padding_macs = len(module.kernel_size) * 4
# Rest of the operations are almost identical to a convolution (given the padding)
conv_macs = macs_convnd(module, inp, out)
return padding_macs + conv_macs
def macs_convnd(module: _ConvNd, inp: Tensor, out: Tensor) -> int:
"""MACs estimation for `torch.nn.modules.conv._ConvNd`"""
# For each position, # mult = kernel size, # adds = kernel size - 1
window_macs_per_chan = reduce(mul, module.kernel_size)
# Connections to input channels is controlled by the group parameter
effective_in_chan = inp.shape[1] // module.groups
# N * mac
window_mac = effective_in_chan * window_macs_per_chan
conv_mac = out.numel() * window_mac
# bias already counted in accumulation
return conv_mac
def macs_bn(module: _BatchNorm, inp: Tensor, out: Tensor) -> int:
"""MACs estimation for `torch.nn.modules.batchnorm._BatchNorm`"""
# sub mean, div by denom
norm_mac = 1
# mul by gamma, add beta
scale_mac = 1 if module.affine else 0
# Sum everything up
bn_mac = inp.numel() * (norm_mac + scale_mac)
# Count tracking stats update ops
# cf. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py#L94-L101
tracking_mac = 0
b = inp.shape[0]
num_spatial_elts = inp.shape[2:].numel()
if module.track_running_stats and module.training:
# running_mean: by channel, sum value and div by batch size
tracking_mac += module.num_features * (b * num_spatial_elts - 1)
# running_var: by channel, sub mean and square values, sum them, divide by batch size
active_elts = b * num_spatial_elts
tracking_mac += module.num_features * (2 * active_elts - 1)
# Update both runnning stat: rescale previous value (mul by N), add it the new one, then div by (N + 1)
tracking_mac += 2 * module.num_features * 2
return bn_mac + tracking_mac
def macs_maxpool(module: _MaxPoolNd, inp: Tensor, out: Tensor) -> int:
"""MACs estimation for `torch.nn.modules.pooling._MaxPoolNd`"""
k_size = reduce(mul, module.kernel_size) if isinstance(module.kernel_size, tuple) else module.kernel_size
# for each spatial output element, check max element in kernel scope
return out.numel() * (k_size - 1)
def macs_avgpool(module: _AvgPoolNd, inp: Tensor, out: Tensor) -> int:
"""MACs estimation for `torch.nn.modules.pooling._AvgPoolNd`"""
k_size = reduce(mul, module.kernel_size) if isinstance(module.kernel_size, tuple) else module.kernel_size
# for each spatial output element, sum elements in kernel scope and div by kernel size
return out.numel() * (k_size - 1 + inp.ndim - 2)
def macs_adaptive_maxpool(module: _AdaptiveMaxPoolNd, inp: Tensor, out: Tensor) -> int:
"""MACs estimation for `torch.nn.modules.pooling._AdaptiveMaxPoolNd`"""
# Approximate kernel_size using ratio of spatial shapes between input and output
kernel_size = tuple(
i_size // o_size if (i_size % o_size) == 0 else i_size - o_size * (i_size // o_size) + 1
for i_size, o_size in zip(inp.shape[2:], out.shape[2:])
)
# for each spatial output element, check max element in kernel scope
return out.numel() * (reduce(mul, kernel_size) - 1)
def macs_adaptive_avgpool(module: _AdaptiveAvgPoolNd, inp: Tensor, out: Tensor) -> int:
"""MACs estimation for `torch.nn.modules.pooling._AdaptiveAvgPoolNd`"""
# Approximate kernel_size using ratio of spatial shapes between input and output
kernel_size = tuple(
i_size // o_size if (i_size % o_size) == 0 else i_size - o_size * (i_size // o_size) + 1
for i_size, o_size in zip(inp.shape[2:], out.shape[2:])
)
# for each spatial output element, sum elements in kernel scope and div by kernel size
return out.numel() * (reduce(mul, kernel_size) - 1 + len(kernel_size))