Source code for torchscan.modules.receptive

# Copyright (C) 2020-2022, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

import math
import warnings
from typing import Tuple, Union

from torch import Tensor, nn
from torch.nn import Module
from torch.nn.modules.batchnorm import _BatchNorm
from torch.nn.modules.conv import _ConvNd, _ConvTransposeNd
from torch.nn.modules.pooling import _AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd

__all__ = ["module_rf"]


[docs] def module_rf(module: Module, inp: Tensor, out: Tensor) -> Tuple[float, float, float]: """Estimate the spatial receptive field of the module Args: module (torch.nn.Module): PyTorch module inp (torch.Tensor): input to the module out (torch.Tensor): output of the module Returns: receptive field effective stride effective padding """ if isinstance( module, ( nn.Identity, nn.Flatten, nn.ReLU, nn.ELU, nn.LeakyReLU, nn.ReLU6, nn.Tanh, nn.Sigmoid, _BatchNorm, nn.Dropout, nn.Linear, ), ): return 1.0, 1.0, 0.0 elif isinstance(module, _ConvTransposeNd): return rf_convtransposend(module, inp, out) elif isinstance(module, (_ConvNd, _MaxPoolNd, _AvgPoolNd)): return rf_aggregnd(module, inp, out) elif isinstance(module, (_AdaptiveMaxPoolNd, _AdaptiveAvgPoolNd)): return rf_adaptive_poolnd(module, inp, out) else: warnings.warn(f"Module type not supported: {module.__class__.__name__}") return 1.0, 1.0, 0.0
def rf_convtransposend(module: _ConvTransposeNd, intput: Tensor, out: Tensor) -> Tuple[float, float, float]: k = module.kernel_size[0] if isinstance(module.kernel_size, tuple) else module.kernel_size s = module.stride[0] if isinstance(module.stride, tuple) else module.stride return -k, 1.0 / s, 0.0 def rf_aggregnd(module: Union[_ConvNd, _MaxPoolNd, _AvgPoolNd], inp: Tensor, out: Tensor) -> Tuple[float, float, float]: k = module.kernel_size[0] if isinstance(module.kernel_size, tuple) else module.kernel_size if hasattr(module, "dilation"): d = module.dilation[0] if isinstance(module.dilation, tuple) else module.dilation k = d * (k - 1) + 1 # type: ignore[operator] s = module.stride[0] if isinstance(module.stride, tuple) else module.stride p = module.padding[0] if isinstance(module.padding, tuple) else module.padding return k, s, p # type: ignore[return-value] def rf_adaptive_poolnd( module: Union[_AdaptiveMaxPoolNd, _AdaptiveAvgPoolNd], inp: Tensor, out: Tensor ) -> Tuple[int, int, float]: stride = math.ceil(inp.shape[-1] / out.shape[-1]) kernel_size = stride padding = (inp.shape[-1] - kernel_size * stride) / 2 return kernel_size, stride, padding