Source code for holocron.optim.lamb

# -*- coding: utf-8 -*-

'''
Rectified Adam optimizer
'''

import torch
from torch.optim.optimizer import Optimizer


[docs] class Lamb(Optimizer): """Implements the Lamb optimizer from `"Large batch optimization for deep learning: training BERT in 76 minutes" <https://arxiv.org/pdf/1904.00962v3.pdf>`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate betas (Tuple[float, float], optional): beta coefficients used for running averages (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) scale_clip (tuple, optional): the lower and upper bounds for the weight norm in local LR of LARS """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, scale_clip=None): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(Lamb, self).__init__(params, defaults) # LARS arguments self.scale_clip = scale_clip if self.scale_clip is None: self.scale_clip = (0, 10) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) # Gradient term correction update = torch.zeros_like(p.data) denom = exp_avg_sq.sqrt().add_(group['eps']) update.addcdiv_(1, exp_avg, denom) # Weight decay if group['weight_decay'] != 0: update.add_(group['weight_decay'], p.data) # LARS p_norm = p.data.pow(2).sum().sqrt() update_norm = update.pow(2).sum().sqrt() phi_p = p_norm.clamp(*self.scale_clip) # Compute the local LR if phi_p == 0 or update_norm == 0: local_lr = 1 else: local_lr = phi_p / update_norm state['local_lr'] = local_lr p.data.add_(-group['lr'] * local_lr, update) return loss