# -*- coding: utf-8 -*-
'''
Bounding box operations
'''
import math
import torch
from torchvision.ops.boxes import box_iou
__all__ = ['box_diou', 'box_ciou']
def iou_penalty(boxes1, boxes2):
"""Implements the penalty term for the Distance-IoU loss
Args:
boxes1 (torch.Tensor[M, 4]): bounding boxes
boxes2 (torch.Tensor[N, 4]): bounding boxes
Returns:
torch.Tensor[M, N]: penalty term
"""
# Diagonal length of the smallest enclosing box
c2 = torch.zeros((boxes1.shape[0], boxes2.shape[0], 2))
# Assign bottom right coords
c2[..., 0] = torch.max(boxes1[:, 2].unsqueeze(-1), boxes2[:, 2].unsqueeze(-2))
c2[..., 1] = torch.max(boxes1[:, 3].unsqueeze(-1), boxes2[:, 3].unsqueeze(-2))
# Subtract top left coords
c2[..., 0].sub_(torch.min(boxes1[:, 0].unsqueeze(-1), boxes2[:, 0].unsqueeze(-2)))
c2[..., 1].sub_(torch.min(boxes1[:, 1].unsqueeze(-1), boxes2[:, 1].unsqueeze(-2)))
c2.pow_(2)
c2 = c2.sum(axis=-1)
# L2 - distance between box centers
center_dist2 = torch.zeros((boxes1.shape[0], boxes2.shape[0], 2))
# Centers of boxes1
center_dist2[..., 0] = boxes1[:, [0, 2]].sum(dim=1).unsqueeze(1)
center_dist2[..., 1] = boxes1[:, [1, 3]].sum(dim=1).unsqueeze(1)
# Centers of boxes2
center_dist2[..., 0].sub_(boxes2[:, [0, 2]].sum(dim=1).unsqueeze(0))
center_dist2[..., 1].sub_(boxes2[:, [1, 3]].sum(dim=1).unsqueeze(0))
center_dist2.pow_(2)
center_dist2 = center_dist2.sum(axis=-1) / 4
return center_dist2 / c2
[docs]
def box_diou(boxes1, boxes2):
"""Computes the Distance-IoU loss as described in `"Distance-IoU Loss: Faster and Better Learning for
Bounding Box Regression" <https://arxiv.org/pdf/1911.08287.pdf>`_.
The loss is defined as follows:
.. math::
\\mathcal{L}_{DIoU} = 1 - IoU + \\frac{\\rho^2(b, b^{GT})}{c^2}
where :math:`IoU` is the Intersection over Union,
:math:`b` and :math:`b^{GT}` are the centers of the box and the ground truth box respectively,
:math:`c` c is the diagonal length of the smallest enclosing box covering the two boxes,
and :math:`\\rho(.)` is the Euclidean distance.
Args:
boxes1 (torch.Tensor[M, 4]): bounding boxes
boxes2 (torch.Tensor[N, 4]): bounding boxes
Returns:
torch.Tensor[M, N]: Distance-IoU loss
"""
return 1 - box_iou(boxes1, boxes2) + iou_penalty(boxes1, boxes2)
def aspect_ratio(boxes):
"""Computes the aspect ratio of boxes
Args:
boxes (torch.Tensor[N, 4]): bounding boxes
Returns:
torch.Tensor[N]: aspect ratio
"""
return torch.atan((boxes[:, 2] - boxes[:, 0]) / (boxes[:, 3] - boxes[:, 1]))
def aspect_ratio_consistency(boxes1, boxes2):
"""Computes the aspect ratio consistency from the complete IoU loss
Args:
boxes1 (torch.Tensor[M, 4]): bounding boxes
boxes2 (torch.Tensor[N, 4]): bounding boxes
Returns:
torch.Tensor[M, N]: aspect ratio consistency
"""
v = aspect_ratio(boxes1).unsqueeze(-1) - aspect_ratio(boxes2).unsqueeze(-2)
v.pow_(2)
v.mul_(4 / math.pi ** 2)
return v
[docs]
def box_ciou(boxes1, boxes2):
"""Computes the Complete IoU loss as described in `"Distance-IoU Loss: Faster and Better Learning for
Bounding Box Regression" <https://arxiv.org/pdf/1911.08287.pdf>`_.
The loss is defined as follows:
.. math::
\\mathcal{L}_{CIoU} = 1 - IoU + \\frac{\\rho^2(b, b^{GT})}{c^2} + \\alpha v
where :math:`IoU` is the Intersection over Union,
:math:`b` and :math:`b^{GT}` are the centers of the box and the ground truth box respectively,
:math:`c` c is the diagonal length of the smallest enclosing box covering the two boxes,
:math:`\\rho(.)` is the Euclidean distance,
:math:`\\alpha` is a positive trade-off parameter,
and :math:`v` is the aspect ratio consistency.
More specifically:
.. math::
v = \\frac{4}{\\pi^2} \\Big(\\arctan{\\frac{w^{GT}}{h^{GT}}} - \\arctan{\\frac{w}{h}}\\Big)^2
and
.. math::
\\alpha = \\frac{v}{(1 - IoU) + v}
Args:
boxes1 (torch.Tensor[M, 4]): bounding boxes
boxes2 (torch.Tensor[N, 4]): bounding boxes
Returns:
torch.Tensor[M, N]: Complete IoU loss
Example:
>>> import torch
>>> from holocron.ops.boxes import box_ciou
>>> boxes1 = torch.tensor([[0, 0, 100, 100], [100, 100, 200, 200]], dtype=torch.float32)
>>> boxes2 = torch.tensor([[50, 50, 150, 150]], dtype=torch.float32)
>>> box_ciou(boxes1, boxes2)
"""
iou = box_iou(boxes1, boxes2)
v = aspect_ratio_consistency(boxes1, boxes2)
ciou_loss = 1 - iou + iou_penalty(boxes1, boxes2)
# Check
_filter = (v != 0) & (iou != 0)
ciou_loss[_filter].addcdiv_(1, v[_filter] ** 2, 1 - iou[_filter] + v[_filter])
return ciou_loss