Source code for holocron.optim.tadam

# -*- coding: utf-8 -*-

'''
Extended version of Adam optimizer with Student-t mean estimation
'''

import torch
from torch.optim.optimizer import Optimizer


[docs] class TAdam(Optimizer): """Implements the TAdam optimizer from `"TAdam: A Robust Stochastic Gradient Optimizer" <https://arxiv.org/pdf/2003.00179.pdf>`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate betas (Tuple[float, float], optional): coefficients used for running averages (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) dof (int, optional): degrees of freedom """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, dof=None): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, dof=dof) super().__init__(params, defaults) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: # Get group-shared variables beta1, beta2 = group['betas'] for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) # state['W_t'] = beta1 / (1 - beta1) state['d'] = p.data.numel() state['dof'] = state['d'] if group['dof'] is None else group['dof'] exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] state['step'] += 1 wt = grad.sub(exp_avg).pow_(2).div_(exp_avg_sq.add(group['eps'])).sum() wt.add_(state['dof']).pow_(-1).mul_(state['dof'] + state['d']) # Decay the first and second moment running average coefficient exp_avg.mul_(state['W_t'] / (state['W_t'] + wt)).add_(grad, alpha=wt / (state['W_t'] + wt)) state['W_t'] *= (2 * beta1 - 1) / beta1 state['W_t'] += wt exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # Bias corrections bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] # Weight decay if group['weight_decay'] != 0: p.data.add_(p.data, alpha=-group['lr'] * group['weight_decay']) # Adaptive momentum p.data.addcdiv_(exp_avg / bias_correction1, (exp_avg_sq / bias_correction2).sqrt().add_(group['eps']), value=-group['lr']) return loss