resnet50

holocron.models.resnet50(pretrained: bool = False, checkpoint: Checkpoint | None = None, progress: bool = True, **kwargs: Any) ResNet[source]

ResNet-50 from “Deep Residual Learning for Image Recognition”

Parameters:
  • pretrained – If True, returns a model pre-trained on ImageNet

  • checkpoint – If specified, load that checkpoint on the model

  • progress – If True, displays a progress bar of the download to stderr

  • kwargs – keyword args of _resnet

Returns:

classification model

Return type:

torch.nn.Module

class holocron.models.ResNet50_Checkpoint(value)[source]

The model builder above accepts the following values as the checkpoint parameter. ResNet50_Checkpoint.DEFAULT is equivalent to ResNet50_Checkpoint.IMAGENETTE

ResNet50_Checkpoint.IMAGENETTE:

Also available as ResNet50_Checkpoint.DEFAULT.

dataset

imagenette

top1-accuracy

0.9378

top5-accuracy

0.9954

url

link

sha256

5b913f0b8148b483

size

90.0MB

num_params

23.5M

categories

tench, English springer, cassette player, … (7 omitted)

input_shape

(3, 224, 224)

mean

(0.485, 0.456, 0.406)

std

(0.229, 0.224, 0.225)

interpolation

InterpolationMode.BILINEAR

commit

6e32c5b