rexnet2_0x

holocron.models.rexnet2_0x(pretrained: bool = False, checkpoint: Checkpoint | None = None, progress: bool = True, **kwargs: Any) ReXNet[source]

ReXNet-2.0x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • checkpoint – If specified, the model’s parameters will be set to the checkpoint’s values

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • kwargs – keyword args of _rexnet

Returns:

classification model

Return type:

torch.nn.Module

class holocron.models.ReXNet2_0x_Checkpoint(value)[source]

The model builder above accepts the following values as the checkpoint parameter. ReXNet2_0x_Checkpoint.DEFAULT is equivalent to ReXNet2_0x_Checkpoint.IMAGENET1K

ReXNet2_0x_Checkpoint.IMAGENET1K:

Also available as ReXNet2_0x_Checkpoint.DEFAULT.

dataset

imagenet-1k

top1-accuracy

0.8031

top5-accuracy

0.9517

url

link

sha256

c8802402442551c7

size

13.7MB

num_params

16.4M

categories

tench, goldfish, great white shark, … (997 omitted)

input_shape

(3, 224, 224)

mean

(0.485, 0.456, 0.406)

std

(0.229, 0.224, 0.225)

interpolation

InterpolationMode.BILINEAR

commit

None

ReXNet2_0x_Checkpoint.IMAGENETTE:

dataset

imagenette

top1-accuracy

0.9524

top5-accuracy

0.9957

url

link

sha256

3f00641e48a6d1d3

size

53.1MB

num_params

13.8M

categories

tench, English springer, cassette player, … (7 omitted)

input_shape

(3, 224, 224)

mean

(0.485, 0.456, 0.406)

std

(0.229, 0.224, 0.225)

interpolation

InterpolationMode.BILINEAR

commit

d4a5999