rexnet1_5x

holocron.models.rexnet1_5x(pretrained: bool = False, checkpoint: Checkpoint | None = None, progress: bool = True, **kwargs: Any) ReXNet[source]

ReXNet-1.5x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • checkpoint – If specified, the model’s parameters will be set to the checkpoint’s values

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • kwargs – keyword args of _rexnet

Returns:

classification model

Return type:

torch.nn.Module

class holocron.models.ReXNet1_5x_Checkpoint(value)[source]

The model builder above accepts the following values as the checkpoint parameter. ReXNet1_5x_Checkpoint.DEFAULT is equivalent to ReXNet1_5x_Checkpoint.IMAGENET1K

ReXNet1_5x_Checkpoint.IMAGENET1K:

Also available as ReXNet1_5x_Checkpoint.DEFAULT.

dataset

imagenet-1k

top1-accuracy

0.8031

top5-accuracy

0.9517

url

link

sha256

c42a16ac73470d64

size

13.7MB

num_params

9.7M

categories

tench, goldfish, great white shark, … (997 omitted)

input_shape

(3, 224, 224)

mean

(0.485, 0.456, 0.406)

std

(0.229, 0.224, 0.225)

interpolation

InterpolationMode.BILINEAR

commit

None

ReXNet1_5x_Checkpoint.IMAGENETTE:

dataset

imagenette

top1-accuracy

0.9447

top5-accuracy

0.9962

url

link

sha256

4b9d7a5901da6c2b

size

30.2MB

num_params

7.8M

categories

tench, English springer, cassette player, … (7 omitted)

input_shape

(3, 224, 224)

mean

(0.485, 0.456, 0.406)

std

(0.229, 0.224, 0.225)

interpolation

InterpolationMode.BILINEAR

commit

d4a5999