rexnet1_3x¶
- holocron.models.rexnet1_3x(pretrained: bool = False, checkpoint: Checkpoint | None = None, progress: bool = True, **kwargs: Any) ReXNet [source]¶
ReXNet-1.3x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”
- Parameters:
- Returns:
classification model
- Return type:
- class holocron.models.ReXNet1_3x_Checkpoint(value)[source]¶
The model builder above accepts the following values as the
checkpoint
parameter.ReXNet1_3x_Checkpoint.DEFAULT
is equivalent toReXNet1_3x_Checkpoint.IMAGENET1K
ReXNet1_3x_Checkpoint.IMAGENET1K:
Also available as
ReXNet1_3x_Checkpoint.DEFAULT
.dataset
imagenet-1k
top1-accuracy
0.795
top5-accuracy
0.9468
url
sha256
95479104024ce294
size
13.7MB
num_params
7.6M
categories
tench, goldfish, great white shark, … (997 omitted)
input_shape
(3, 224, 224)
mean
(0.485, 0.456, 0.406)
std
(0.229, 0.224, 0.225)
interpolation
InterpolationMode.BILINEAR
commit
None
ReXNet1_3x_Checkpoint.IMAGENETTE:
dataset
imagenette
top1-accuracy
0.9488
top5-accuracy
0.9939
url
sha256
cf85ae919cbc9484
size
22.8MB
num_params
5.9M
categories
tench, English springer, cassette player, … (7 omitted)
input_shape
(3, 224, 224)
mean
(0.485, 0.456, 0.406)
std
(0.229, 0.224, 0.225)
interpolation
InterpolationMode.BILINEAR
commit