rexnet1_3x

holocron.models.rexnet1_3x(pretrained: bool = False, checkpoint: Checkpoint | None = None, progress: bool = True, **kwargs: Any) ReXNet[source]

ReXNet-1.3x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”

Parameters:
  • pretrained (bool) – If True, returns a model pre-trained on ImageNet

  • checkpoint – If specified, the model’s parameters will be set to the checkpoint’s values

  • progress (bool) – If True, displays a progress bar of the download to stderr

  • kwargs – keyword args of _rexnet

Returns:

classification model

Return type:

torch.nn.Module

class holocron.models.ReXNet1_3x_Checkpoint(value)[source]

The model builder above accepts the following values as the checkpoint parameter. ReXNet1_3x_Checkpoint.DEFAULT is equivalent to ReXNet1_3x_Checkpoint.IMAGENET1K

ReXNet1_3x_Checkpoint.IMAGENET1K:

Also available as ReXNet1_3x_Checkpoint.DEFAULT.

dataset

imagenet-1k

top1-accuracy

0.795

top5-accuracy

0.9468

url

link

sha256

95479104024ce294

size

13.7MB

num_params

7.6M

categories

tench, goldfish, great white shark, … (997 omitted)

input_shape

(3, 224, 224)

mean

(0.485, 0.456, 0.406)

std

(0.229, 0.224, 0.225)

interpolation

InterpolationMode.BILINEAR

commit

None

ReXNet1_3x_Checkpoint.IMAGENETTE:

dataset

imagenette

top1-accuracy

0.9488

top5-accuracy

0.9939

url

link

sha256

cf85ae919cbc9484

size

22.8MB

num_params

5.9M

categories

tench, English springer, cassette player, … (7 omitted)

input_shape

(3, 224, 224)

mean

(0.485, 0.456, 0.406)

std

(0.229, 0.224, 0.225)

interpolation

InterpolationMode.BILINEAR

commit

d4a5999