resnet50d

holocron.models.resnet50d(pretrained: bool = False, checkpoint: Checkpoint | None = None, progress: bool = True, **kwargs: Any) ResNet[source]

ResNet-50-D from “Bag of Tricks for Image Classification with Convolutional Neural Networks”

Parameters:
  • pretrained – If True, returns a model pre-trained on ImageNet

  • checkpoint – If specified, load that checkpoint on the model

  • progress – If True, displays a progress bar of the download to stderr

  • kwargs – keyword args of _resnet

Returns:

classification model

Return type:

torch.nn.Module

class holocron.models.ResNet50D_Checkpoint(value)[source]

The model builder above accepts the following values as the checkpoint parameter. ResNet50D_Checkpoint.DEFAULT is equivalent to ResNet50D_Checkpoint.IMAGENETTE

ResNet50D_Checkpoint.IMAGENETTE:

Also available as ResNet50D_Checkpoint.DEFAULT.

dataset

imagenette

top1-accuracy

0.9465

top5-accuracy

0.9952

url

link

sha256

6218d936fa67c004

size

90.1MB

num_params

23.5M

categories

tench, English springer, cassette player, … (7 omitted)

input_shape

(3, 224, 224)

mean

(0.485, 0.456, 0.406)

std

(0.229, 0.224, 0.225)

interpolation

InterpolationMode.BILINEAR

commit

6e32c5b