Source code for holocron.nn.modules.conv

# Copyright (C) 2019-2024, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

import math
from typing import Any, List, Optional, cast

import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.functional import pad
from torch.nn.modules.conv import _ConvNd
from torch.nn.modules.utils import _pair

from .. import functional as F

__all__ = ["Add2d", "Involution2d", "NormConv2d", "PyConv2d", "SlimConv2d"]


class _NormConvNd(_ConvNd):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        transposed: bool,
        output_padding: int,
        groups: int,
        bias: bool,
        padding_mode: str,
        normalize_slices: bool = False,
        eps: float = 1e-14,
    ) -> None:
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,  # type: ignore[arg-type]
            stride,  # type: ignore[arg-type]
            padding,  # type: ignore[arg-type]
            dilation,  # type: ignore[arg-type]
            transposed,
            output_padding,  # type: ignore[arg-type]
            groups,
            bias,
            padding_mode,
        )
        self.normalize_slices = normalize_slices
        self.eps = eps


[docs] class NormConv2d(_NormConvNd): r"""Implements the normalized convolution module from `"Normalized Convolutional Neural Network" <https://arxiv.org/pdf/2005.05274v2.pdf>`_. In the simplest case, the output value of the layer with input size :math:`(N, C_{in}, H, W)` and output :math:`(N, C_{out}, H_{out}, W_{out})` can be precisely described as: .. math:: out(N_i, C_{out_j}) = bias(C_{out_j}) + \sum_{k = 0}^{C_{in} - 1} weight(C_{out_j}, k) \star \frac{input(N_i, k) - \mu(N_i, k)}{\sqrt{\sigma^2(N_i, k) + \epsilon}} where :math:`\star` is the valid 2D cross-correlation operator, :math:`\mu(N_i, k)` and :math:`\sigma²(N_i, k)` are the mean and variance of :math:`input(N_i, k)` over all slices, :math:`N` is a batch size, :math:`C` denotes a number of channels, :math:`H` is a height of input planes in pixels, and :math:`W` is width in pixels. Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` padding_mode (string, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` eps (float, optional): a value added to the denominator for numerical stability. Default: 1e-14 """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, padding: int = 0, dilation: int = 1, groups: int = 1, bias: bool = True, padding_mode: str = "zeros", eps: float = 1e-14, ) -> None: kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super().__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode, False, eps, ) def forward(self, x: Tensor) -> Tensor: if self.padding_mode != "zeros": return F.norm_conv2d( pad(x, self._reversed_padding_repeated_twice, mode=self.padding_mode), self.weight, self.bias, self.stride, # type: ignore[arg-type] _pair(0), self.dilation, # type: ignore[arg-type] self.groups, self.eps, ) return F.norm_conv2d( x, self.weight, self.bias, self.stride, # type: ignore[arg-type] self.padding, # type: ignore[arg-type] self.dilation, # type: ignore[arg-type] self.groups, self.eps, )
[docs] class Add2d(_NormConvNd): r"""Implements the adder module from `"AdderNet: Do We Really Need Multiplications in Deep Learning?" <https://arxiv.org/pdf/1912.13200.pdf>`_. In the simplest case, the output value of the layer at position :math:`(m, n)` in channel :math:`c` with filter F of spatial size :math:`(d, d)`, intput size :math:`(C_{in}, H, W)` and output :math:`(C_{out}, H, W)` can be precisely described as: .. math:: out(m, n, c) = - \sum\limits_{i=0}^d \sum\limits_{j=0}^d \sum\limits_{k=0}^{C_{in}} |X(m + i, n + j, k) - F(i, j, k, c)| where :math:`C` denotes a number of channels, :math:`H` is a height of input planes in pixels, and :math:`W` is width in pixels. .. image:: https://github.com/frgfm/Holocron/releases/download/v0.1.3/add2d.png :align: center :alt: Add2D schema Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` padding_mode (string, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` normalize_slices (bool, optional): whether slices should be normalized before performing cross-correlation. Default: False eps (float, optional): a value added to the denominator for numerical stability. Default: 1e-14 """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, padding: int = 0, dilation: int = 1, groups: int = 1, bias: bool = True, padding_mode: str = "zeros", normalize_slices: bool = False, eps: float = 1e-14, ) -> None: kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super().__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode, normalize_slices, eps, ) def forward(self, x: Tensor) -> Tensor: if self.padding_mode != "zeros": return F.add2d( pad(x, self._reversed_padding_repeated_twice, mode=self.padding_mode), self.weight, self.bias, self.stride, # type: ignore[arg-type] _pair(0), self.dilation, # type: ignore[arg-type] self.groups, self.normalize_slices, self.eps, ) return F.add2d( x, self.weight, self.bias, self.stride, # type: ignore[arg-type] self.padding, # type: ignore[arg-type] self.dilation, # type: ignore[arg-type] self.groups, self.normalize_slices, self.eps, )
[docs] class SlimConv2d(nn.Module): r"""Implements the convolution module from `"SlimConv: Reducing Channel Redundancy in Convolutional Neural Networks by Weights Flipping" <https://arxiv.org/pdf/2003.07469.pdf>`_. First, we compute channel-wise weights as follows: .. math:: z(c) = \frac{1}{H \cdot W} \sum\limits_{i=1}^H \sum\limits_{j=1}^W X_{c,i,j} where :math:`X \in \mathbb{R}^{C \times H \times W}` is the input tensor, :math:`H` is height in pixels, and :math:`W` is width in pixels. .. math:: w = \sigma(F_{fc2}(\delta(F_{fc1}(z)))) where :math:`z \in \mathbb{R}^{C}` contains channel-wise statistics, :math:`\sigma` refers to the sigmoid function, :math:`\delta` refers to the ReLU function, :math:`F_{fc1}` is a convolution operation with kernel of size :math:`(1, 1)` with :math:`max(C/r, L)` output channels followed by batch normalization, and :math:`F_{fc2}` is a plain convolution operation with kernel of size :math:`(1, 1)` with :math:`C` output channels. We then proceed with reconstructing and transforming both pathways: .. math:: X_{top} = X \odot w .. math:: X_{bot} = X \odot \check{w} where :math:`\odot` refers to the element-wise multiplication and :math:`\check{w}` is the channel-wise reverse-flip of :math:`w`. .. math:: T_{top} = F_{top}(X_{top}^{(1)} + X_{top}^{(2)}) .. math:: T_{bot} = F_{bot}(X_{bot}^{(1)} + X_{bot}^{(2)}) where :math:`X^{(1)}` and :math:`X^{(2)}` are the channel-wise first and second halves of :math:`X`, :math:`F_{top}` is a convolution of kernel size :math:`(3, 3)`, and :math:`F_{bot}` is a convolution of kernel size :math:`(1, 1)` reducing channels by half, followed by a convolution of kernel size :math:`(3, 3)`. Finally we fuse both pathways to yield the output: .. math:: Y = T_{top} \oplus T_{bot} where :math:`\oplus` is the channel-wise concatenation. .. image:: https://github.com/frgfm/Holocron/releases/download/v0.1.3/slimconv2d.png :align: center :alt: SlimConv2D schema Args: in_channels (int): Number of channels in the input image kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` padding_mode (string, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` r (int, optional): squeezing divider. Default: 32 L (int, optional): minimum squeezed channels. Default: 8 """ def __init__( self, in_channels: int, kernel_size: int, stride: int = 1, padding: int = 0, dilation: int = 1, groups: int = 1, bias: bool = True, padding_mode: str = "zeros", r: int = 32, L: int = 2, # noqa: N803 ) -> None: super().__init__() self.fc1 = nn.Conv2d(in_channels, max(in_channels // r, L), 1) self.bn = nn.BatchNorm2d(max(in_channels // r, L)) self.fc2 = nn.Conv2d(max(in_channels // r, L), in_channels, 1) self.conv_top = nn.Conv2d( in_channels // 2, in_channels // 2, kernel_size, stride, padding, dilation, groups, bias, padding_mode ) self.conv_bot1 = nn.Conv2d(in_channels // 2, in_channels // 4, 1) self.conv_bot2 = nn.Conv2d( in_channels // 4, in_channels // 4, kernel_size, stride, padding, dilation, groups, bias, padding_mode ) def forward(self, x: Tensor) -> Tensor: # Channel-wise weights z = x.mean(dim=(2, 3), keepdim=True) z = self.bn(self.fc1(z)) z = self.fc2(torch.relu(z)) w = torch.sigmoid(z) # Compression X_w = x * w X_top = X_w[:, : x.shape[1] // 2] + X_w[:, x.shape[1] // 2 :] X_w = x * w.flip(dims=(1,)) X_bot = X_w[:, : x.shape[1] // 2] + X_w[:, x.shape[1] // 2 :] # Transform X_top = self.conv_top(X_top) X_bot = self.conv_bot2(self.conv_bot1(X_bot)) # Fuse return torch.cat((X_top, X_bot), dim=1)
[docs] class PyConv2d(nn.ModuleList): """Implements the convolution module from `"Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition" <https://arxiv.org/pdf/2006.11538.pdf>`_. .. image:: https://github.com/frgfm/Holocron/releases/download/v0.1.3/pyconv2d.png :align: center :alt: PyConv2D schema Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int): Size of the convolving kernel num_levels (int, optional): number of stacks in the pyramid padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 groups (list(int), optional): Number of blocked connections from input channels to output channels. Default: 1 """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int, num_levels: int = 2, padding: int = 0, groups: Optional[List[int]] = None, **kwargs: Any, ) -> None: if num_levels == 1: super().__init__([ nn.Conv2d( in_channels, out_channels, kernel_size, padding=padding, groups=groups[0] if isinstance(groups, list) else 1, **kwargs, ) ]) else: exp2 = int(math.log2(num_levels)) reminder = num_levels - 2**exp2 out_chans = [out_channels // 2 ** (exp2 + 1)] * (2 * reminder) + [out_channels // 2**exp2] * ( num_levels - 2 * reminder ) k_sizes = [kernel_size + 2 * idx for idx in range(num_levels)] if groups is None: groups = [1] + [ min(2 ** (2 + idx), out_chan) for idx, out_chan in zip(range(num_levels - 1), out_chans[1:]) ] elif not isinstance(groups, list) or len(groups) != num_levels: raise ValueError("The argument `group` is expected to be a list of integer of size `num_levels`.") paddings = [padding + idx for idx in range(num_levels)] super().__init__([ nn.Conv2d(in_channels, out_chan, k_size, padding=padding, groups=group, **kwargs) for out_chan, k_size, padding, group in zip(out_chans, k_sizes, paddings, groups) ]) self.num_levels = num_levels def forward(self, x: Tensor) -> Tensor: if self.num_levels == 1: return cast(Tensor, self[0].forward(x)) return torch.cat([conv(x) for conv in self], dim=1)
[docs] class Involution2d(nn.Module): """Implements the convolution module from `"Involution: Inverting the Inherence of Convolution for Visual Recognition" <https://arxiv.org/pdf/2103.06255.pdf>`_, adapted from the proposed PyTorch implementation in the paper. .. image:: https://github.com/frgfm/Holocron/releases/download/v0.1.3/involutions.png :align: center :alt: Involution2d schema Args: in_channels (int): Number of channels in the input image kernel_size (int): Size of the convolving kernel padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 stride: Stride of the convolution. Default: 1 groups: Number of blocked connections from input channels to output channels. Default: 1 dilation: Spacing between kernel elements. Default: 1 reduction_ratio: reduction ratio of the channels to generate the kernel """ def __init__( self, in_channels: int, kernel_size: int, padding: int = 0, stride: int = 1, groups: int = 1, dilation: int = 1, reduction_ratio: float = 1, ) -> None: super().__init__() self.groups = groups self.k_size = kernel_size self.pool = nn.AvgPool2d(stride, stride) if stride > 1 else None self.reduce = nn.Conv2d(in_channels, int(in_channels // reduction_ratio), 1) self.span = nn.Conv2d(int(in_channels // reduction_ratio), kernel_size**2 * groups, 1) self.unfold = nn.Unfold(kernel_size, dilation, padding, stride) def forward(self, x: Tensor) -> Tensor: # Kernel generation # (N, C, H, W) --> (N, C, H // s, W // s) kernel = cast(Tensor, self.pool(x)) if isinstance(self.pool, nn.Module) else x # --> (N, C // r, H // s, W // s) kernel = self.reduce(kernel) # --> (N, K * K * G, H // s, W // s) kernel = self.span(kernel) # --> (N, G, 1, K ** 2, H // s, W // s) kernel = kernel.view(x.shape[0], self.groups, 1, self.k_size**2, *kernel.shape[-2:]) # --> (N, C * K ** 2, H * W // s ** 2) x_unfolded = cast(Tensor, self.unfold(x)) # --> (N, G, C // G, K ** 2, H // s, W // s) x_unfolded = x_unfolded.reshape(x.shape[0], self.groups, x.shape[1] // self.groups, -1, *kernel.shape[-2:]) # Multiply-Add operation # --> (N, C, H // s, W // s) return (kernel * x_unfolded).sum(dim=3).view(*x.shape[:2], *kernel.shape[-2:])