Source code for holocron.optim.adamp

# Copyright (C) 2019-2024, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

import math
from typing import Callable, Iterable, List, Optional, Tuple

import torch
from torch import Tensor
from torch.nn import functional as F
from torch.optim import Adam

__all__ = ["AdamP", "adamp"]


[docs] class AdamP(Adam): r"""Implements the AdamP optimizer from `"AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights" <https://arxiv.org/pdf/2006.08217.pdf>`_. The estimation of momentums is described as follows, :math:`\forall t \geq 1`: .. math:: m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 where :math:`g_t` is the gradient of :math:`\theta_t`, :math:`\beta_1, \beta_2 \in [0, 1]^2` are the exponential average smoothing coefficients, :math:`m_0 = g_0,\ v_0 = 0`. Then we correct their biases using: .. math:: \hat{m_t} \leftarrow \frac{m_t}{1 - \beta_1^t} \\ \hat{v_t} \leftarrow \frac{v_t}{1 - \beta_2^t} And finally the update step is performed using the following rule: .. math:: p_t \leftarrow \frac{\hat{m_t}}{\sqrt{\hat{n_t} + \epsilon}} \\ q_t \leftarrow \begin{cases} \prod_{\theta_t}(p_t) & if\ cos(\theta_t, g_t) < \delta / \sqrt{dim(\theta)}\\ p_t & \text{otherwise}\\ \end{cases} \\ \theta_t \leftarrow \theta_{t-1} - \alpha q_t where :math:`\theta_t` is the parameter value at step :math:`t` (:math:`\theta_0` being the initialization value), :math:`\prod_{\theta_t}(p_t)` is the projection of :math:`p_t` onto the tangent space of :math:`\theta_t`, :math:`cos(\theta_t, g_t)` is the cosine similarity between :math:`\theta_t` and :math:`g_t`, :math:`\alpha` is the learning rate, :math:`\delta > 0`, :math:`\epsilon > 0`. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate betas (Tuple[float, float], optional): coefficients used for running averages (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (bool, optional): whether to use the AMSGrad variant (default: False) delta (float, optional): delta threshold for projection (default: False) """ def __init__( self, params: Iterable[torch.nn.Parameter], lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0.0, amsgrad: bool = False, delta: float = 0.1, ) -> None: super().__init__(params, lr, betas, eps, weight_decay, amsgrad) self.delta = delta @torch.no_grad() def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: # type: ignore[override] """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] max_exp_avg_sqs = [] state_steps = [] for p in group["params"]: if p.grad is not None: params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError(f"{self.__class__.__name__} does not support sparse gradients") grads.append(p.grad) state = self.state[p] # Lazy state initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) if group["amsgrad"]: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avgs.append(state["exp_avg"]) exp_avg_sqs.append(state["exp_avg_sq"]) if group["amsgrad"]: max_exp_avg_sqs.append(state["max_exp_avg_sq"]) # update the steps for each param group update state["step"] += 1 # record the step after step update state_steps.append(state["step"]) beta1, beta2 = group["betas"] adamp( params_with_grad, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, group["amsgrad"], beta1, beta2, group["lr"], group["weight_decay"], group["eps"], self.delta, ) return loss
def adamp( params: List[Tensor], grads: List[Tensor], exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor], max_exp_avg_sqs: List[Tensor], state_steps: List[int], amsgrad: bool, beta1: float, beta2: float, lr: float, weight_decay: float, eps: float, delta: float, ) -> None: r"""Functional API that performs AdamP algorithm computation. See :class:`~holocron.optim.AdamP` for details. """ for i, param in enumerate(params): grad = grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] step = state_steps[i] bias_correction1 = 1 - beta1**step bias_correction2 = 1 - beta2**step if weight_decay != 0: grad = grad.add(param, alpha=weight_decay) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i]) # Use the max. for normalizing running avg. of gradient denom = (max_exp_avg_sqs[i].sqrt() / math.sqrt(bias_correction2)).add_(eps) else: denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) # Extra step pt = exp_avg / bias_correction1 / denom if F.cosine_similarity(param.data.view(1, -1), grad.view(1, -1)).max() < delta / math.sqrt(param.data.numel()): normalized_param = param.data / param.data.norm().add_(eps) pt -= (normalized_param * pt).sum() * normalized_param.data param.add_(pt, alpha=-lr)