Source code for holocron.optim.lamb

# Copyright (C) 2019-2024, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

from typing import Callable, Iterable, Optional, Tuple

import torch
from torch.optim.optimizer import Optimizer

__all__ = ["LAMB"]


[docs] class LAMB(Optimizer): r"""Implements the Lamb optimizer from `"Large batch optimization for deep learning: training BERT in 76 minutes" <https://arxiv.org/pdf/1904.00962v3.pdf>`_. The estimation of momentums is described as follows, :math:`\forall t \geq 1`: .. math:: m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 where :math:`g_t` is the gradient of :math:`\theta_t`, :math:`\beta_1, \beta_2 \in [0, 1]^2` are the exponential average smoothing coefficients, :math:`m_0 = 0,\ v_0 = 0`. Then we correct their biases using: .. math:: \hat{m_t} \leftarrow \frac{m_t}{1 - \beta_1^t} \\ \hat{v_t} \leftarrow \frac{v_t}{1 - \beta_2^t} And finally the update step is performed using the following rule: .. math:: r_t \leftarrow \frac{\hat{m_t}}{\sqrt{\hat{v_t}} + \epsilon} \\ \theta_t \leftarrow \theta_{t-1} - \alpha \phi(\lVert \theta_t \rVert) \frac{r_t + \lambda \theta_t}{\lVert r_t + \theta_t \rVert} where :math:`\theta_t` is the parameter value at step :math:`t` (:math:`\theta_0` being the initialization value), :math:`\phi` is a clipping function, :math:`\alpha` is the learning rate, :math:`\lambda \geq 0` is the weight decay, :math:`\epsilon > 0`. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate betas (Tuple[float, float], optional): beta coefficients used for running averages (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) scale_clip (tuple, optional): the lower and upper bounds for the weight norm in local LR of LARS """ def __init__( self, params: Iterable[torch.nn.Parameter], lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0.0, scale_clip: Optional[Tuple[float, float]] = None, ) -> None: if lr < 0.0: raise ValueError(f"Invalid learning rate: {lr}") if eps < 0.0: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") defaults = {"lr": lr, "betas": betas, "eps": eps, "weight_decay": weight_decay} super().__init__(params, defaults) # LARS arguments self.scale_clip = scale_clip if self.scale_clip is None: self.scale_clip = (0.0, 10.0) @torch.no_grad() def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: # type: ignore[override] """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError(f"{self.__class__.__name__} does not support sparse gradients") state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # Gradient term correction update = torch.zeros_like(p.data) denom = exp_avg_sq.sqrt().add_(group["eps"]) update.addcdiv_(exp_avg, denom) # Weight decay if group["weight_decay"] != 0: update.add_(p.data, alpha=group["weight_decay"]) # LARS p_norm = p.data.pow(2).sum().sqrt() update_norm = update.pow(2).sum().sqrt() phi_p = p_norm.clamp(*self.scale_clip) # Compute the local LR local_lr = 1 if phi_p == 0 or update_norm == 0 else phi_p / update_norm state["local_lr"] = local_lr p.data.add_(update, alpha=-group["lr"] * local_lr) return loss