Source code for holocron.optim.tadam

# Copyright (C) 2019-2024, François-Guillaume Fernandez.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

import math
from typing import Callable, Dict, Iterable, List, Optional, Tuple

import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer

__all__ = ["TAdam", "tadam"]


[docs] class TAdam(Optimizer): r"""Implements the TAdam optimizer from `"TAdam: A Robust Stochastic Gradient Optimizer" <https://arxiv.org/pdf/2003.00179.pdf>`_. The estimation of momentums is described as follows, :math:`\forall t \geq 1`: .. math:: w_t \leftarrow (\nu + d) \Big(\nu + \sum\limits_{j} \frac{(g_t^j - m_{t-1}^j)^2}{v_{t-1} + \epsilon} \Big)^{-1} \\ m_t \leftarrow \frac{W_{t-1}}{W_{t-1} + w_t} m_{t-1} + \frac{w_t}{W_{t-1} + w_t} g_t \\ v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) (g_t - g_{t-1}) where :math:`g_t` is the gradient of :math:`\theta_t`, :math:`\beta_1, \beta_2 \in [0, 1]^2` are the exponential average smoothing coefficients, :math:`m_0 = 0,\ v_0 = 0,\ W_0 = \frac{\beta_1}{1 - \beta_1}`; :math:`\nu` is the degrees of freedom and :math:`d` if the number of dimensions of the parameter gradient. Then we correct their biases using: .. math:: \hat{m_t} \leftarrow \frac{m_t}{1 - \beta_1^t} \\ \hat{v_t} \leftarrow \frac{v_t}{1 - \beta_2^t} And finally the update step is performed using the following rule: .. math:: \theta_t \leftarrow \theta_{t-1} - \alpha \frac{\hat{m_t}}{\sqrt{\hat{v_t}} + \epsilon} where :math:`\theta_t` is the parameter value at step :math:`t` (:math:`\theta_0` being the initialization value), :math:`\alpha` is the learning rate, :math:`\epsilon > 0`. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate betas (Tuple[float, float], optional): coefficients used for running averages (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) dof (int, optional): degrees of freedom """ def __init__( self, params: Iterable[torch.nn.Parameter], lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0.0, amsgrad: bool = False, dof: Optional[float] = None, ) -> None: if lr < 0.0: raise ValueError(f"Invalid learning rate: {lr}") if eps < 0.0: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not weight_decay >= 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = {"lr": lr, "betas": betas, "eps": eps, "weight_decay": weight_decay, "amsgrad": amsgrad, "dof": dof} super().__init__(params, defaults) def __setstate__(self, state: Dict[str, torch.Tensor]) -> None: super().__setstate__(state) for group in self.param_groups: group.setdefault("amsgrad", False) @torch.no_grad() def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: # type: ignore[override] """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] W_ts = [] # noqa: N806 max_exp_avg_sqs = [] state_steps = [] beta1, beta2 = group["betas"] for p in group["params"]: if p.grad is not None: params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError(f"{self.__class__.__name__} does not support sparse gradients") grads.append(p.grad) state = self.state[p] # Lazy state initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) if group["amsgrad"]: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) # Tadam specific state["W_t"] = beta1 / (1 - beta1) * torch.ones(1, dtype=p.data.dtype, device=p.data.device) exp_avgs.append(state["exp_avg"]) exp_avg_sqs.append(state["exp_avg_sq"]) W_ts.append(state["W_t"]) if group["amsgrad"]: max_exp_avg_sqs.append(state["max_exp_avg_sq"]) # update the steps for each param group update state["step"] += 1 # record the step after step update state_steps.append(state["step"]) tadam( params_with_grad, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, W_ts, state_steps, group["amsgrad"], beta1, beta2, group["lr"], group["weight_decay"], group["eps"], group["dof"], ) return loss
def tadam( params: List[Tensor], grads: List[Tensor], exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor], max_exp_avg_sqs: List[Tensor], W_ts: List[Tensor], # noqa: N803 state_steps: List[int], amsgrad: bool, beta1: float, beta2: float, lr: float, weight_decay: float, eps: float, dof: float, ) -> None: r"""Functional API that performs TAdam algorithm computation. See :class:`~holocron.optim.TAdam` for details. """ for i, param in enumerate(params): grad = grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] W_t = W_ts[i] # noqa: N806 dof_ = param.data.numel() if dof is None else dof step = state_steps[i] if amsgrad: max_exp_avg_sq = max_exp_avg_sqs[i] bias_correction1 = 1 - beta1**step bias_correction2 = 1 - beta2**step if weight_decay != 0: grad = grad.add(param, alpha=weight_decay) # Decay the first and second moment running average coefficient w_t = grad.sub(exp_avg).pow_(2).div_(exp_avg_sq.add(eps)).sum() w_t.add_(dof_).pow_(-1).mul_(dof_ + param.data.numel()) exp_avg.mul_(W_t / (W_t + w_t)).addcdiv_(w_t * grad, W_t + w_t) W_t.mul_((2 * beta1 - 1) / beta1) W_t.add_(w_t) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.maximum(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) else: denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) step_size = lr / bias_correction1 param.addcdiv_(exp_avg, denom, value=-step_size)